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Topics

Integral functionals
Homogenization
Integral Representation
Dimensional Reduction

related to imaging, elasticity and optimal design problems.
Supremal functionals

Dimensional reduction
Lp approximation
Minimum problems without convexity .

The results have been obtained in collaboration with
Graça Carita (University of Evora),
Ana Margarida Ribeiro (New University of Lisbon).
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Common feature of the integral problems consists of
minimizing a functional
F(·, ·) with dependence on two unrelated fields.

Examples:

1 F(u, v) = ‖Du‖(Ω) + 1
2λ‖ϕ− u − v‖2

L2 : ϕ: given image,
u, v : cartoon and noise.

2 F(u, v) =
∫

Ω f
(
x
ε , v ,∇u

)
dx u, v : displacement and

chemical composition.

3 F(χ, v) =
∫

Ω(χW1(∇v) + (1− χ)W2(∇v))dx + |Dχ|(Ω).
Ω: design region, v : displacement, χ: set to fill.

Focus on 3: Optimal design problems
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Optimal Design

Main contributions (not complete list)

Kohn- Strang

Ambrosio -Buttazzo - with perimeter penalization

Kohn- Li - with perimeter penalization

Bouchitté- Fragalá-Seppecher - thin structures and linear
elasticity setting)

Fonseca- Franfort - dimensional reduction with no
perimeter penalization

Braides-Fonseca-Francfort- dimensional reduction with no
perimeter penalization

Larsen

Carozza-Fonseca-Passarelli di Napoli -regularity
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Optimal Design Problem

3. Let F : BV (Ω; {0, 1})×W 1,p
(
Ω;Rd

)
→ [0,+∞] , p ≥ 1

F (χE , v) : =

∫
Ω

(χEW1 + (1− χE )W2) (∇v)dx (1)

−
∫

Ω
f · v dx + Per(E; Ω)

)

λ :=
1

|Ω|

∫
Ω
χE (x) dx  vol. frac.

E ⊂ Ω has finite perimeter, f ∈ Lp′ (Ω).
Wi : RdxN → R continuous satisfying

α |ξ|p − γ ≤Wi (ξ) ≤ β (1 + |ξ|p) , ∀ ξ ∈ Rd×N , i = 1, 2,
(2)

for some α, β, γ > 0.
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Vectorial case

Optimal Design Problem

C (χE ) = − inf
v∈W 1,p

{∫
Ω

(χEW1 + (1− χE )W2) (∇v)dx

−
∫

Ω f · v dx + Per(E ; Ω)
}

The best optimal design would be

− sup
χ

{
−C (χ) : χ ∈ BV (Ω; {0, 1}) , 1

|Ω|

∫
Ω
χ dx = λ

}

Problem

inf
(χ,v)

{
F (χ, v) : v = 0 on ∂Ω,

1

|Ω|

∫
Ω
χ dx = λ,

v ∈W 1,p(Ω; Rd), χ ∈ BV (Ω; {0, 1})
}



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

Result: superlinear case

Theorem (p > 1)

Ω ⊂ RN bounded, Lipschitz, open and Wi : Rd×N → [0,+∞),
i = 1, 2, continuous with growth (2). If F denotes the
relaxation (L1 × L1) of F in (1) then

F(χ, v) = Jp(χ, v)

for every (χ, v) ∈ BV (Ω; {0, 1})×W 1,p(Ω;Rd).

Jp : BV (Ω; {0, 1})×W 1,p(Ω;Rd)→ [0,+∞[ is defined as

Jp (χ, v) :=

∫
Ω

QV (χ,∇v)dx −
∫

Ω
f · vdx + |Dχ|(Ω).
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Comments

V (e, ξ) := eW1(ξ) + (1− e)W2(ξ) (3)

QV stands for the quasiconvexification of V in the second
variable.

The proof is direct via double inequality. It just requires p-
equi-integrability results for the upper bound.

The result is available also in the 3D − 2D setting.

Other penalizations terms can be taken into account.

p > 1: no interaction!
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Linear case for optimal design

Case p = 1: (2) reads as

α|ξ| − γ ≤Wi (ξ) ≤ β(|ξ|+ 1) i = 1, 2.

Relaxation F of F in (1)  requires a representation on
BV (Ω; {0, 1})× BV (Ω;Rd).

Question: Which interaction between χ and v?

Answer: Just in the ’jump set’.
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Integral representation for F , p = 1

Theorem

Ω ⊂ RN , Wi : Rd×N → [0,+∞), i = 1, 2, continuous with
linear growth. Then, for every
(χ, v) ∈ BV (Ω; {0, 1})× BV (Ω;Rd),

F(χ, v) = J1(χ, v),

where

J1(χ, v) =

∫
Ω

QV (χ,∇v)dx +

∫
Ω

QV∞
(
χ,

dDcv

d |Dcv |

)
d |Dcv |

+

∫
J(χ,v)

K2

(
χ+, χ−, v +, v−, ν

)
dHN−1.
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Integral representation for F , p = 1

Recall that V is as in (3) and QV is its quasiconvexification

and QV∞ is the recession function of QV , namely,

QV∞ (e, ξ) := lim
t→∞

QV (e, tξ)

t
,
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Relaxation: integral representation for F , p = 1.

The interaction is described through the following density

K2(a, b, c , d , ν) := inf

{∫
Qν

QV∞(χ(x),∇v(x))dx + |Dχ|(Qν) :

(χ, v) ∈ A2(a, b, c, d , ν)
}
,

(4)
where

A2 (a, b, c , d , ν) :=
{

(χ, v) ∈ BV (Qν ; {0, 1})×W 1,1
(

Qν ;Rd
)

:

(χ, v) = (a, c) if y · ν =
1

2
, (χ, v) = (b, d) if y · ν = −1

2
,

(χ, v)1− periodic in ν1, . . . , νN−1directions} ,

for (a, b, c , d , ν) ∈ {0, 1} × {0, 1} × Rd × Rd × SN−1, with Qν

the unit cube, centered at the origin, with axes parallel to
{ν1, ν2, . . . , νN−1, ν} .
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Relaxation: representation for F , p = 1.

The surface energy can be specialized as follows∫
J(χ,v)

K2(χ+, χ−, v +, v−, ν(χ,v))dHN−1 =∫
Jv\Jχ

QV∞(χ, (v + − v−)⊗ νv )dHN−1+

|Dχ|(Ω ∩ (Jχ \ Jv ))

+

∫
Jχ∩Jv

K2(χ+, χ−, v +, v−, ν(χ,v))dHN−1.
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Representation for F , p = 1: comments.

Key idea: to consider the couple (χ, v) as a unique BV -
field U, keeping in mind that ∇U = (0,∇v) and
DcU = (0,Dcv)

Existing results: Barroso-Bouchitté-Buttazzo-Fonseca
ARMA (1996): Relaxation in BV ∗ of
u ∈ SBV →

∫
Ω f (x ,∇u)dx +

∫
Ju

g(x , [u](x), νu)dHN−1.
Bouchitté -Fonseca- Mascarenhas, Global Method ARMA
(1998).
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Vectorial case

Representation for F , p = 1. Sketch of the proof.

Blow-up!

Lower bound inequality:

F(χ, v) ≥ lim
ε→0

∫
Ω

(χεW1(∇vε) + (1− χε)W2(∇vε)) dx .

(5)
“Bulk” and “Cantor” parts: it ’s enough.

But
F(χ, v) > lim

ε→0

∫
Ω (χεW1(∇vε) + (1− χε)W2(∇vε)) dx .

need of ’extending-gluing’ Fonseca-Muller ARMA (1993)
and Ambrosio-Braides JMPA (1990).
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Representation for F , p = 1. Sketch of the proof.

Upper bound inequality: F is a measure absolutely
continuous with respect to LN + |Dχ|+ |Dv |.

“Bulk” and “Cantor” parts :via ”Global Method for
Relaxation” BFM (1998).

“Jump” term requires a direct estimate.
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Representation for F : open points.

Consider

inf

{
lim
ε→0

(∫
Ω

(uεW1 + (1− uε)W2) (∇vε) dx+∫
Ω
|∇vε|dx

)
: {(uε, vε)} ⊂W 1,1 (Ω; [0, 1])×W 1,1(Ω;Rd)

uε → u in L1 (Ω; [0, 1])
vε → v in L1

(
Ω;Rd

)
,

}
,

Particular case in Fonseca-Muller ARMA (1993).
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Representation for F : open points.

Recall that the jump term in FM (1993) is given by :

K (a, b, c , d , ν) := inf

{∫
Qν

(QV∞(u,∇v) + |∇u|) dx :

(u, v) ∈ A(a, b, c , d , ν)
}
,

where V is as in (3) and

A(a, b, c , d , ν) :=
{

(u, v) ∈W 1,1
(
Qν ;R1+d

)
:

(u, v) = (a, c) if y · ν = 1
2 , (u, v) = (b, d) if y · ν = −1

2 ,
(u, v) are 1− periodic in ν1, . . . , νN−1directions} ,

(a, b, c , d , ν) ∈ {0, 1} × {0, 1} × Rd × Rd × SN−1.

Easy to see that K ≤ K2.What about K2 ≤ K ?
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Our result says that

F(u, v) =

∫
Ω

Qf (u,∇v) dx +

∫
Ω

Qf∞
(

u,
dDcv

d |Dcv |

)
d |Dcv |+

∫
J(u,v)∩A

K3

(
u+, u−, v +, v−, ν

)
dHN−1,

for every (u, v) ∈ SBV0(Ω;Rm)× BV (Ω;Rd).
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K3(a, b, c , d , ν) :=

inf

{∫
Qν

Qf∞(u,∇v)dx +

∫
Ju∩Qν

g(u+, u−, ν)dHN−1 :

(u, v) ∈ A3(a, b, c , d , ν)
}

where

A3 (a, b, c , d , ν) :={
(u, v) ∈ (SBV0(Qν ;Rm) ∩ L∞(Qν ;Rm))×W 1,1(Qν ;Rd) :

(u, v) = (a, c) if y · ν = −1

2
, (u, v) = (b, d) if y · ν =

1

2
,

(u, v) are 1− periodic in ν1, . . . νN−1directions} ,
(6)
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Comparison: K3 ≤ K2. We suspect K3 < K2!

More explicit formulas for the surface term K3.∫
J(u,v)

K3(u+, u−, v +, v−, ν(u,v))dHN−1 =∫
Jv\Jv

Qf∞(u, (v + − v−)⊗ νv )dHN−1+

∫
Ju\Jv

Rg(u+, u−, νu)dHN−1+

∫
Ju∩Jv

K3(u+, u−, v +, v−, ν(u,v))dHN−1

Rg is the BV-elliptic envelope of g !
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Supremal functionals

Aronsson in

Minimization Problems for the Functional
supx F (x , f (x), f ′(x)). Ark. Mat. 6 (1965), 33- 53,

Min. Pb.... Ark. Mat. 6 (1966), 409- 431,

Min. Pb... Ark. Mat.7 (1969), 509- 512, and in

Extension of Functions satisfying Lipschitz conditions.
Ark. Mat. 6 (1967), 551- 561

developed the theory in connection with infinity laplacian
namely with

∆∞u = 0 in Ω ⊂ RN ,
equivalently < ∇u,D2u∇u >= 0,

(i .e.uxi uxj uxixj = 0, )

with u : Ω ⊂ RN → R, u smooth enough
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Supremal functionals

Namely he considered the L∞-variational problem

min I∞(u) = min ess sup
Ω
|∇u|.

for which
∆∞u = 0

represents the Euler-Lagrange (now ‘Euler-Aronsson’) equation.

Barron et al. (20-25 years later) addressed the theory, i.e.

min
u∈W 1,∞(Ω)

ess sup
x∈Ω

f (x , u(x),∇u(x))

starting the study of ess supx∈Ω f (x , u(x),∇u(x)) making a
parallel with the integral setting.
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Minimum problems

Why?

Newton’s law in R. Pb: Want to minimize the maximum
pointwise force of an object moving :minu ‖ν(x)u′′(x)‖L∞ ,
ν(x) is the proportional factor between force and
acceleration and it may be media dependent and
discontinuous...

Chebychev approximation theory,

Design of beam subjected to loading and bending needs to
minimize L∞ norm of second derivatives of deflection.

Minimal Lipschitz extension.

Take u0 ∈W 1,∞(Ω) (f = | |) and consider

inf

{
ess sup
x∈Ω

f (∇u(x)) : u ∈ u0 + W 1,∞
0 (Ω)

}
, (P)
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Supremal functionals - main contributions:

Lower semicontinuity: by Barron, Jensen, Prinari,...

Control theory: Barron,...

PDE’s applications: Barron,...

Lp-approximation/ Γ-convergence: De Pascale, Prinari,
Garroni, Ponsiglione,..

Applications: Nesi, Bocea, Garroni, Prinari,...

Supremal representation: Barron, Cardaliaguet, Prinari,...

Homogenization: Briani, Garroni, Prinari,...

Dimension reduction: Prinari, Babadjian, Z.

Absolute minimizers: Champion, De Pascale, Crandall,
Jutineen, Jensen, Barron,...

A∞-quasiconvexity: Bocea, Ansini, Prinari,...

BV -setting: Gori, De Cicco, Maggi, Braides,...
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Supremal functionals: basic facts

Focus on F (u) = ess sup
x∈Ω

f (∇u(x)), u ∈W 1,∞(Ω).

Barron and Liu in Appl. Math. Optim. ’97 rediscovered the
notion of ‘level convexity’, in order to characterize lower
semicontinuity for F (cf. also Acerbi-Buttazzo-Prinari)

Theorem - Necessity If F (u) is sequentially weak* lower
semicontinuous, then f is lower semicontinuous and level
convex.

Theorem - Sufficiency (Barron-Jensen-Wang ’99 Ann. Poinc.)
If f : Rn −→ R level convex and lower semicontinuous then
F (u) is sequentially weakly* lower semicontinuous.
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Level convexity

Definition f : RN → R is ‘level convex’ if the sublevels are
convex, i.e. ∀t ∈ R

Lt(f ) := {ξ ∈ RN : f (ξ) ≤ t} is convex.

In other words for every λ ∈ [0, 1], ξ1, ξ2 ∈ RN

f (λξ1 + (1− λ)ξ2) ≤ max{f (ξ1), f (ξ2)}

or Supremal Jensen’s ineq.

f

(∫
Ω

v(x)dµ(x)

)
≤ µ− ess sup

x∈Ω
(f (v(x))),

with µ probability measure, v ∈ L1
µ(Ω), Ω bounded domain.
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Level convexity

Convexity implies level convexity. Consider f : x ∈ (0, 1)→
√

x
to see that level convexity does not imply convexity.

Level convexity does not imply lower semicontinuity, i.e. level
sets can be convex but not closed. Take in R, f := χR\(0,1).

Lower semicontinuous envelopes of level convex functions
f : Rn → [−∞,+∞] are level convex.

Level convex function f : Rn, n > 1, may not be Borel
measurable: i.e. f := χRn\C , C convex but not Borel
measurable.
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Relaxation Theorem

Theorem

Ω ⊂ Rn bn’d open set, Lipschitz bd. and f : Rn → R
continuous (and coercive). If F (u) := ess supx∈Ωf (∇u(x)) for

u ∈ u0 + W 1,∞
0 (Ω), and F is its relaxed functional, then

F (u) = ess sup
x∈Ω

f lslc(∇u(x)), ∀ u ∈ u0 + W 1,∞
0 (Ω) (7)

where f lslc is the lower semicontinuous and level convex
envelope of f ,

f lslc(ξ) = sup{g(ξ) : g ≤ f , g lsc and level convex}. (8)
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Representation for f lslc

Many ‘equivalent’ representations are available for f lslc.

Caratheodory’s formula (f lsc and lim
|ξ|→+∞

f (ξ)

|ξ|
= +∞):

f lslc(ξ) := min

{
max

1≤i≤n+1
f (ξi ) : ξ =

n+1∑
i=1

λiξi , λi ≥ 0,
n+1∑
i=1

λi = 1

}
.

In particular if f is continuous and lim
|ξ|→+∞

f (ξ) = +∞,

f lslc(ξ) = sup{g(ξ), g level convex , g ≤ f } =: f lc(ξ).

In terms of duality: define f ∗ : Rn × R→ R, and f ∗∗ : Rn → R
as

f ∗(p, γ) := sup{min{< p, x >, γ} − f (x) : x ∈ Rn},

f ∗∗(x) := sup{min{< p, x >, γ} − f ∗(p, γ) : p ∈ Rn, γ ∈ R}.
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Representation for f lslc

Theorem

If f : Rn → [−∞,∞] is bounded from below, then

f ∗∗(ξ) = f lslc(ξ) for every ξ ∈ Rn. (9)

Ideas about proof: Ekeland & Temam, i.e. Separation theorems
(c.f. Martinez-Legaz ’88 and Barron & Liu ’97).

I. E.: f level convex and lsc. If (ξ0, b) 6∈ epi(f ), then ∃p ∈ Rn,
γ, β ∈ R such that

min{< p, ξ0 >, γ} − β = b,

min{< p, ξ >, γ} − β < η, ∀(ξ, η) ∈ epi(f ).

Moreover

f ∗∗(ξ) = sup{g(ξ) : g is level affine and g(ξ) ≤ f (ξ)} = f lslc(ξ).
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Relaxation Theorem - equivalent formulation:

Take F : u ∈ u0 + W 1,∞
0 (Ω) → ess sup

x∈Ω
f (∇u(x)),

F be its relaxed functional,
F lslc = sup{G ,G ≤ F ,weakly ∗ lsc, level convex},
F ∗ : (L1(Ω))n+1 × R→ [−∞,∞], defined by
F ∗(p, γ) = sup{min{< p, u >, γ} − F (u), u ∈ u0 + W 1,∞

0 (Ω)};
F ∗∗ : u0 + W 1,∞

0 (Ω)→ [−∞,∞], defined by F ∗∗(u) =
sup{min{< p, u >, γ} − F ∗(p, γ) : p ∈ (L1(Ω))n+1, γ ∈ R}
< ·, · > is the duality between L1 and L∞, where u ∈W 1,∞(Ω)
is identified with (u,∇u) ∈ (L∞(Ω))n+1.

Theorem

F lslc(u) = F (u) = F ∗∗(u) = ess sup
x∈Ω

f ∗∗(∇u(x)),
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Minimum problems

Want to find solutions to (P). So consider again

inf

{
ess sup
x∈Ω

f (∇u(x)) : u ∈ u0 + W 1,∞
0 (Ω)

}
, (P)

inf

{
ess sup
x∈Ω

f lslc(∇u(x)) : u ∈ u0 + W 1,∞
0 (Ω)

}
. (P lc)

Integral setting: A. Cellina Nonlinear Analysis (1993)

inf

{∫
Ω

f (∇u(x))dx : u ∈ u0 + W 1,∞
0 (Ω)

}
(P ′)

inf

{∫
Ω

Cf (∇u(x))dx : u ∈ u0 + W 1,∞
0 (Ω)

}
. (P ′

c
)
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(P) = (P lc)

Theorem

Let Ω ⊂ Rn and f : Rn → R be as before. Let u0 ∈W 1,∞(Ω)
and let (P) and (P lc) be as above. Then

(P) = (P lc).

Moreover, if the boundary condition is affine, say
u0(x) = uξ0(x) := ξ0 · x + c with ξ0 ∈ Rn and x ∈ Rn, then

(P) = f lslc(ξ0).

Proof: (P) = (P lc) follows by relaxation.
((P lc) is a minimum, i.e. ∃ u ∈ u0 + W 1,∞

0 (Ω) such that

F (u) = (P lc).

The case of affine boundary conditions, is supremal Jensen
inequality.
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Another formula for f lslc

By-product-in the scalar case: when f is continuous and
coercive, for every ξ0 ∈ Rn,

f lslc(ξ0) = inf

{
ess sup
x∈Ω

f (∇u) : u ∈ uξ0 + W 1,∞
0 (Ω)

}
(10)

(cf. Barron-Jensen-Wang ’99), Weak Morrey-quasiconvexity:

f (ξ0) = inf
{

ess supx∈Q f (∇u(x)) : u ∈ uξ0 + W 1,∞
0 (Q)

}
-

necessary condition for lower semicontinuity in the vectorial
case.

[Proof]: Enough: ∀ε > 0 find u ∈ uξ0 + W 1,∞
0 (Ω) such that

f lslc(ξ0) + ε ≥ ess sup
x∈Ω

f (∇u(x)),

equiv. find u ∈ uξ0 + W 1,∞
0 (Ω) s.t. ∇u(x) ∈ Lf lslc(ξ0)+ε(f ) a.e.

x ∈ Ω.
Thus we are led to solve a differential inclusion.
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Existence of solutions for the non-level convex
problem (P).

Theorem (NSC)

Consider (P) and (P lc) as above, (i.e. Ω, f : Rn → R and
u0 ∈W 1,∞(Ω)).

(P) has a solution if and only if there exists u ∈ u0 + W 1,∞
0 (Ω)

such that
f (∇u (x)) ≤ (P lc), a.e. x ∈ Ω. (11)

In particular, if u0 is affine, i. e. u0 = uξ0 then condition (11)
becomes

f (∇u (x)) ≤ f lslc(ξ0), a.e. x ∈ Ω. (12)

Moreover, still if u0 = uξ0 , problem (P) admits a solution if and
only if

ξ0 ∈ Lf lslc(ξ0)(f ) ∪ int Lf lslc(ξ0)(f lslc). (13)
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Connections with the integral setting (cf. (11) and
(12))

Comparing with the analogous problem in the integral setting
(scalar case, f not convex),

inf

{∫
Ω

f (∇u(x))dx : u ∈ u0 + W 1,∞
0 (Ω)

}
,

we recall that the correspondent formulas to (11) and (12) are
given by

f (∇u(x)) = Cf (∇u(x)) a. e. in Ω, (14)

and ∫
Ω

Cf (∇u(x))dx = Cf (ξ0)L(Ω), (15)

where u ∈ u0 + W 1,∞(Ω) and Cf stands for the convex
envelope of f and in the affine case recall u0 = uξ0 .
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Tool: Differential Inclusions (cf. Cellina,
Dacorogna, Friesecke, Marcellini)

Theorem (NDI)

Let Ω ⊂ Rn be a bounded open set, E ⊂ Rn, ξ0 ∈ Rn. If
u ∈ uξ0 + W 1,∞

0 (Ω) is such that

∇u(x) ∈ E , a.e. x ∈ Ω, then ξ0 ∈ E ∪ int co E ,

Theorem (SDI)

Let ϕ ∈W 1,∞(Ω) satisfying

∇ϕ(x) ∈ E ∪ int co E , a.e. in Ω.

Then ∃u ∈ ϕ+ W 1,∞
0 (Ω) s. t. ∇u(x) ∈ E , a.e. in Ω.

Moreover, given ε > 0, u can be chosen such that
||u − ϕ||L∞(Ω) ≤ ε.
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Back to Theorem NSC

Theorem (NSC)

Let Ω ⊂ Rn and f : Rn → R be as above. Let u0 ∈W 1,∞(Ω).
Then problem (P) has a solution if and only if there exists
u ∈ u0 + W 1,∞

0 (Ω) such that

f (∇u (x)) ≤ (P lc), a.e. x ∈ Ω. (11)

In particular, if u0 is affine, i. e. u0 = uξ0 then condition (11)
becomes

f (∇u (x)) ≤ f lslc(ξ0), a.e. x ∈ Ω. (12)

Moreover, still if u0 = uξ0 , problem (P) admits a solution if and
only if

ξ0 ∈ Lf lslc(ξ0)(f ) ∪ int Lf lslc(ξ0)(f lslc). (13)

It is crucial, as in the integral setting, the set
{ξ : f lslc(ξ) < f (ξ)}
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Back to Theorem NSC-few things

The last assertion of the Theorem, if u0 is not affine, says that

∇u0(x) ∈ L(P lc)(f ) ∪ int L(P lc)(f lslc), a.e. x ∈ Ω

is a sufficient condition for existence of solutions to problem
(P).

If u ∈ u0 + W 1,∞
0 (Ω) solves problem (P) then Theorem

[(P) = (P lc)], implies

ess sup
x∈Ω

f (∇u (x)) = (P lc), i.e. (11)

For the reverse implication observe that (P lc) ≤ (P).

(12) is supremal Jensen’s ineq.

(13) follows from Theorems [NDI] and [SDI] (with
E = Lf lslc(ξ0)(f )) and from co(Lf lslc(ξ0)(f )) = Lf lslc(ξ0)(f lslc).
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A solution always exists in dimension 1

Corollary

Let Ω ⊂ R and f : R→]−∞; +∞[ be as above. Consider (P)
with u0 = uξ0 . Then problem (P) admits a solution for every
ξ0 ∈ R.

Proof. Want to show that ξ0 ∈ R verifies (13):

ξ0 ∈ Lf lslc(ξ0)(f ) ∪ int Lf lslc(ξ0)(f lslc).

Clearly ξ0 ∈ Lf lslc(ξ0)(f lslc) = co Lf lslc(ξ0)(f ).
If ξ0 ∈ Lf lslc(ξ0)(f ) OK.
W.l.g. ξ0 ∈ co Lf lslc(ξ0)(f ) \ Lf lslc(ξ0)(f ).

We conclude that ξ0 ∈ int Lf lslc(ξ0)(f lslc) = int co Lf lslc(ξ0)(f ):
in R, the elements of the boundary of a convex hull belong
either to the original set or to the complement of the convex
hull.
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Counterexample in dimension 2

The set int co Lf lslc(ξ0)(f ) might be empty.

Example

Let f : (z1, z2) ∈ R2 → (z2
1 − 1)2 + z2

2 ∈ R. Clearly f ≥ 0, and
f (z1, z2) = 0 if and only if (z1, z2) = (±1, 0). Since f ≥ 0 then
f lslc ≥ 0, and thus{

f lslc = 0
}

= L0(f lslc) = co L0(f ) = [−1, 1]× {0},

and it has empty interior.
Take ξ0 ∈ (−1, 1)× {0}, then
∇uξ0 6∈ Lf lslc(ξ0)(f ) ∪ int Lf lslc(ξ0)(f lslc).
Consider the minimizing problem (P) related to the function f
as above, with b.c. u0 = uξ0 , then (P lc) admits a unique
solution.
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Another sufficient condition for existence with more
general boundary data.

Theorem

Let Ω ⊂ Rn and f : Rn → R be as above. Let u0 ∈W 1,∞(Ω).
Consider (P) and (P lc) , and assume that problem (P lc)
admits a solution u ∈ C 1

piec(Ω).

If f lslc is constant in each connected component of the set
where f lslc < f , then problem (P) has a solution.
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Non-existence Results

Theorem ( in purpose for f lslc )

Let Ω ⊂ Rn, f : Rn → R be as above. Consider (P) and (P lc)
with the affine boundary condition uξ0 and assume f lslc satisfies
the condition

ess sup
x∈Ω

f lslc (∇u (x)) = f lslc(ξ0)

u ∈ uξ0 + W 1,∞
0 (Ω)

 ⇒ u = uξ0 ,

then problem (P lc) has a unique solution.
So if f 6= f lslc, (P) has no solution!
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Non-existence Results

Theorem (Non Existence)

Let Ω ⊂ Rn be a bounded open set, uξ0(x) = ξ0 · x + c for
some ξ0 ∈ Rn and let f : Rn −→ R be a continuous and strictly
level convex function. Then problem

inf

{
ess sup
x∈Ω

f (∇u (x)) : u ∈ uξ0 + W 1,∞
0 (Ω)

}
has a unique solution.
Thus (P) with u0 = uξ0 for some ξ0 ∈ Rn ∩ {f lslcs(ξ) < f (ξ)}
has no solution.
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Strict level convexity

A function is said to be strictly level convex if and only if

f (tξ + (1− t)η) < max{f (ξ), f (η)}

for every t ∈ (0, 1) and ξ 6= η.
Equivalently, in the case f is a Borel measurable and finite
function,

f

(∫
Ω
ϕ dµ

)
< µ− ess sup

x∈Ω
f (ϕ(x)),

for every probability measure µ on Rn supported in the open
set Ω ⊂ Rd and every nonconstant ϕ ∈ L1

µ(Ω;Rn).

Iff for every c in the range of f , Lc(f ) is convex and
Rc(f ) ⊆ Ext(Lc(f )).



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

Strict level convexity

Crucial observation: In Rn, n > 1, f lslc is not strictly level
convex!
Cf. Caratheodory type formula for f lslc: if f lslc(ξ0) < f (ξ0) and
f coercive, then f lslc is constant in a segment line containing
ξ0, eventually with ξ0 an extreme point.

Thus nonexistence of solution to (P) has to be ensured via
weaker conditions on f lslc .

Strict level convexity of supremand does not carry to the
supremal functional F !



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

Strict level convexity

Crucial observation: In Rn, n > 1, f lslc is not strictly level
convex!
Cf. Caratheodory type formula for f lslc: if f lslc(ξ0) < f (ξ0) and
f coercive, then f lslc is constant in a segment line containing
ξ0, eventually with ξ0 an extreme point.

Thus nonexistence of solution to (P) has to be ensured via
weaker conditions on f lslc .

Strict level convexity of supremand does not carry to the
supremal functional F !



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

Strict level convexity

Crucial observation: In Rn, n > 1, f lslc is not strictly level
convex!
Cf. Caratheodory type formula for f lslc: if f lslc(ξ0) < f (ξ0) and
f coercive, then f lslc is constant in a segment line containing
ξ0, eventually with ξ0 an extreme point.

Thus nonexistence of solution to (P) has to be ensured via
weaker conditions on f lslc .

Strict level convexity of supremand does not carry to the
supremal functional F !



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

Non existence of solutions

1. f : Rn → R, level convex is strictly level convex at ξ0 ∈ Rn,
if for every t ∈ (0, 1) and for every
ξ 6= η : ξ0 = tξ + (1− t)η ⇒ f (ξ0) < max{f (ξ), f (η)},
i.e. ξ0 ∈ ExtLf (ξ0)(f )

2. or for every
t ∈ [0, 1], ξ 6= ξ0, f (tξ0 + (1− t)ξ) < max{f (ξ0), f (ξ)},

This condition is stronger than 1., take

f (ξ) =

{
−ξ if ξ ≤ 0,
0 if ξ > 0.
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Other conditions: 3. f : Rn → R, level convex is strictly
level convex at ξ0 ∈ Rn in at least one direction if there exists
α ∈ Rn \ {0} such that if for some γ and η ∈ Rn,{
ξ0 = tγ + (1− t)η, t ∈ (0, 1)
f (ξ0) = max{f (γ), f (η)} then (γ − η) · α = 0

f strictly level convex at ξ0 in at least one direction (and lsc.)
iff ξ0 ∈ ∂Lf (ξ0)(f )

4.....

{
ξ = tξ0 + (1− t)η, t ∈ (0, 1)
f (ξ) = max{f (γ), f (η)} then (ξ0 − η) · α = 0

f : ξ ∈ R2 → dist(ξ,R+ × R) is satisfying 3. at ξ0 = (0, 0) but
neither 1., 2. or 4.
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Nonexistence of solutions

Theorem

Let Ω, f be as above. Let ξ0 ∈ Rn, consider problem (P) for
u0 = uξ0 and assume that f lslc(ξ0) < f (ξ0).
(P) has a solution if and only if f lslc is not strictly level convex
at ξ0 in any direction.

[Proof.] It relies on the fact that (P) admits a solution u 6= uξ0

if ξ0 ∈ int(Lf (ξ0)(f )).
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AML

Definition one possible Definition
u∗ ∈W 1,∞(Ω) is an absolute minimizer of
F (u,Ω) := ess sup

x∈Ω
f (∇u(x)), if, for any open set Ω′ ⊂ Ω′ ⊂ Ω,

u∗ is a solution for

inf

{
ess sup
x∈Ω′

f (∇u(x)) : u ∈ u∗ + W 1,∞
0 (Ω′)

}
.

This property is automatically inherited by minimizers of
analogous problem in the integral setting.

It fails for supremals
From now on we will consider Ω convex.
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AML

In the above definition no b.c. have been imposed.

Example

if f level convex, then every affine u∗ = uξ is an AML!

(i) f level convex and (P) has uξ0 as b. c., then uξ0 is a
solution to (P) which is an absolute minimizer.

(ii) If f is strictly level convex at ξ0 in at least one direction
and (P) has uξ0 as b. c. then uξ0 is an absolute minimizer
and uξ0 is the only solution to (P). Thus we have
uniqueness of the solution to (P). But there is no
uniqueness of absolute minimizers since, all the other
affine functions are AML.



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

AML

In the above definition no b.c. have been imposed.

Example

if f level convex, then every affine u∗ = uξ is an AML!

(i) f level convex and (P) has uξ0 as b. c., then uξ0 is a
solution to (P) which is an absolute minimizer.

(ii) If f is strictly level convex at ξ0 in at least one direction
and (P) has uξ0 as b. c. then uξ0 is an absolute minimizer
and uξ0 is the only solution to (P). Thus we have
uniqueness of the solution to (P). But there is no
uniqueness of absolute minimizers since, all the other
affine functions are AML.



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

AML

In the above definition no b.c. have been imposed.

Example

if f level convex, then every affine u∗ = uξ is an AML!

(i) f level convex and (P) has uξ0 as b. c., then uξ0 is a
solution to (P) which is an absolute minimizer.

(ii) If f is strictly level convex at ξ0 in at least one direction
and (P) has uξ0 as b. c. then uξ0 is an absolute minimizer
and uξ0 is the only solution to (P). Thus we have
uniqueness of the solution to (P). But there is no
uniqueness of absolute minimizers since, all the other
affine functions are AML.



Introduction

Optimal
Design

Superlinear case

Linear case

Generalizations.

Supremal
Functionals

Level convexity

Relaxation and
representation

Minimum
Problems:

Necessary and
Sufficient
conditions

Is the theorem
meaningful?

Uniqueness -
Non existence

Absolute
minimizers

Vectorial case

AML

Question: Does strict level convexity ensure that minimizers are
AML?

Answer: NO even if b.c. are imposed. I.e. Lipschitz extension
problem with b.c. admits more than one solution, but A.M.L.
are unique because they solve ∆∞u = 0.

What about converse? Are AML unique if minimizers unique?
Again the answer is no since no b.c. is imposed to define
A.M.L. and affine functions answer.
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AML

Observation: We do not know if Crandall’s arguments apply
to other strict level convex functions (not ≡ | · |) to get
uniqueness of A.M.L. in terms of PDEs.

What about AML for non level convex problems?
Partial answer: If f (ξ0) = f lslc(ξ0) then ξ0 is AML for (P).

In general one should guarantee that f (∇u(x)) ≤ (P ′lc) on any
open subset of Ω...
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Vectorial case

Much more difficult!
There are not relaxation results yet! Why?

A function f is level convex if and only if all its level sets Lα(f )
are convex (for every α), i.e. if and only if ILα(f ) is convex for
every α. (

IE (x) =

{
0 if x ∈ E ,
+∞ otherwise.

)
A function f is weak Morrey quasiconvex if and only if ILα(f ) is
QUASICONVEX in the integral sense! (cf. Barron & Jensen &
Wang ’01 Ann. I. H. P.)
But Quasiconvexity in the vectorial integral setting does not
have a precise meaning!
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THANK YOU!
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Appendix

STRONG MORREY QUASICONVEXITY: Definition A Borel

measurable function f : Rm×n → R is said to be strong Morrey
quasiconvex if for any ε > 0, for any ξ ∈ Rm×n, and any
K > 0, there exists a δ = δ(ε,K , ξ) > 0 such that if
ϕ ∈W 1,∞(Q;Rm) satisfies

‖∇ϕ‖L∞(Q) ≤ K , max
x∈∂Q

|ϕ(x)| ≤ δ,

then,
f (ξ) ≤ ess sup

x∈Q
f (ξ +∇ϕ(x)) + ε.

This is the condition proved to be N & S for LSC, but not yet
proved to be stronger than Weak M-qcx
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