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Schwarz Spherical Symmetrization about a point

A ⊂ Rn |A| <∞ A∗ := {x ∈ Rn : ωn|x|n < |A|}

1 The symmetric decreasing rearrangement
Rearrangements manipulate the shape of a geometric object while preserving its size. They are
used in the Calculus of Variations to find extremals of geometric functionals. Here, we will study
the symmetric decreasing rearrangement, which replaces a given nonnegative function f by a
radial function f ⇤.

1.1 Definition and basic properties
Let A be a measurable set of finite volume in Rn. Its symmetric rearrangement A⇤ is the open
centered ball whose volume agrees with A,

A⇤ =
�
x 2 Rn | !n|x|n < Vol(A)

 
.

Figure 1.1: A⇤ is the centered ball of the same volume as A.

Let f be a nonnegative measurable function that vanishes at infinity, in the sense that all its
positive level sets have finite measure,

Vol
�
{x | f(x) > t}

�
< 1 , (for all t > 0) .

We define define the symmetric decreasing rearrangement f ⇤ of f by symmetrizing its the level
sets,

f ⇤(x) =

Z 1

0

X{f(x)>t}⇤ dt .

Then f ⇤ is lower semicontinuous (since its level sets are open), and is uniquely determined by the
distribution function

µf (t) = Vol
�
{x | f(x) > t}

�
. (1.1)

By construction, f ⇤ is equimeasurable with f , i.e., corresponding level sets of the two functions
have the same volume,

µf (t) = µf⇤(t) , (all t > 0) . (1.2)

3

f ∗(z) := inf{t > 0 : |{x ∈ Rn : f (x) > t}| ≤ ωn|x|n}

Figure 1.2: f⇤ is radially decreasing and equimeasurable with f .

Exercise 1.1 Convince yourself that the definitions of A⇤ and f ⇤ are consistent,

XA⇤ =
�
XA

�⇤
,

�
x | f(x) > t

 ⇤
=
�
x | f ⇤(x) > t

 
.

Exercise 1.2 For a, b > 0, find the symmetric decreasing rearrangement of the function

f(x) =

8
<
:

1 � ax , 0  x  a�1 ,
1 + bx , �b�1  x  0 ,
0 , otherwise .

Question 1.3 If f is smooth, does it follow that f ⇤ is differentiable?

1.2 Functions and their level sets

Our definition of f ⇤ used a special case of the layer-cake decomposition, which expresses a
nonnegative function f in terms of its level sets as

f(x) =

Z 1

0

X{f(x)>t} dt . (1.3)

Note that the characteristic function X{f(x)>t} is jointly measurable in x and t, provided that f is
measurable. This allows to reduce statements about functions to statements about their level sets:

Lemma 1.4 (Rearrangement preserves Lp-norms) For every nonnegative function f in Lp(Rn),

||f ||p = ||f ⇤||p 1  p  1 , (1.4)

4

drawing by Almut Burchard - 2009
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Steiner Symmetrization about an hyperplane

Given any measurable set A ⊂ Rn, for every x′ ∈ Rn−1 we set

Ax′ := {xn ∈ R : (x′, xn) ∈ A} and l(x′) =
1
2
L1(Ax′).

Steiner symmetral As of A about the hyperplane H := {xn = 0}
As := {(x′, xn) ∈ Rn−1 × R : |xn| < l(x′)}.
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Steiner Symmetrization of a function
37. Symmetrizing G(U) diagram

u : Rn → [0,∞) measurable such that for a.e. x′ ∈ Rn−1

lu(x′, t) :=
1
2
L1 ({xn ∈ R : u(x′, xn) > t}

)
<∞ ∀ t > 0

The Steiner rearrangement of u with respect to {xn = 0} is

us(x) := inf
{

t > 0 : lu(x′, t) ≤ |xn|
}
.

graphic by Andrejs Treibergs - 2008
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Steiner Symmetrization of a function
37. Symmetrizing G(U) diagram

Remark (Segment property)
Denote by Es the subgraph of us. Es is a set enjoying the property that
its intersection with any straight line L orthogonal to H is a segment,
symmetric about H, whose length equals the (1-dimensional) measure
of L ∩ Eu
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Pólya-Szegő inequalities

Theorem

If u ∈ W1,p
0 (D) then us ∈ W1,p

0 (Ds) and u∗ ∈ W1,p
0 (D∗). Moreover

∫

Rn
|∇u|pdz ≥

∫

Rn
|∇us|pdz

∫

Rn
|∇u|pdz ≥

∫

Rn
|∇u∗|pdz.

Aim
The aim of our work is to provide a quantitative versions of the
previous inequalities.
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The main question

Pólya-Szegő deficit of u

Dp(u) :=

∫

Rn
|∇u|p dz−

∫

Rn
|∇us|p dz

Question

Can the Pólya-Szegő deficit of an arbitrary W1,p
0 function be used to

estimate its asymmetry with respect to the hyperplane H, measured as
a distance between u and us?

Remark
A relevant issue in connection with variational problems having Steiner
symmetric extremal is that such an estimate should ensure that u is
arbitrarily close to us when Dp(u) is sufficiently small.

Giovanni Pisante Trends in Non-Linear Anal. - IST - Lisboa 31/07/2014 8 / 21



Counterexample - 1d - plateaus

676 A. Cianchi, N. Fusco / Bull. Sci. math. 130 (2006) 675–696

A celebrated result, tracing its origins in the work of Pólya and Szegö [23] and subsequently
extended and refined by various authors (including [1,2,4,6–8,10,11,15,19–22,24–26]), states
that if u belongs to the Sobolev space W

1,p
0 (Ω) for some p ! 1, then us ∈ W

1,p
0 (Ω) as well, and

∫

Ω

|∇us |p dx "
∫

Ω

|∇u|p dx. (1.1)

Accordingly, we shall call the difference between the right-hand side and the left-hand side
of (1.1) the Pólya–Szegö deficit of u, and denote it by Dp(u); namely, we set

Dp(u) =
∫

Ω

|∇u|p dx −
∫

Ω

|∇us |p dx. (1.2)

Obviously, Dp(u) = 0 if u is Steiner symmetric about H . Thus, the question can be risen of
whether the Pólya–Szegö deficit of an arbitrary function u ∈ W

1,p
0 (Ω) can be used to estimate

its asymmetry about H , measured as a distance between u and us . Of course, such an estimate
should ensure that u is arbitrarily close to us , provided that Dp(u) is sufficiently small. Notice
that this issue is relevant, for instance, in connection with quantitative estimates in variational
problems having Steiner symmetric extremals.

In contrast to the stability of various geometric and functional inequalities known in the lit-
erature (see e.g. [5,16–18]), the answer to the above question, as stated, is negative. Indeed, it is
well known, and easily seen by elementary examples, that functions u, far from being symmetric,
exist such that Dp(u) = 0. Consider, for instance, the case where n = 1. In this case H = {0},
and Steiner symmetrization agrees with Schwarz spherical symmetrization, which associates to
any nonnegative (measurable) function having support of finite measure an equidistributed func-
tion symmetrically decreasing about 0. Let Ω = (−3,3), let v be the piecewise affine function
displayed in Fig. 1 and let v⋆ be its Schwarz symmetral.

Fig. 1.

Dp(u) = 0 6⇒ u = us

Main obstruction
The presence of a plateau below the top level in the graph of u
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Counterexample - 2d - plateaus678 A. Cianchi, N. Fusco / Advances in Mathematics 203 (2006) 673 – 728

Fig. 1. The graph of u is on the left; on the right, the graph of us.

Fig. 2. The domain of u is the union of two rectangles.

where Hk stands for k-dimensional Hausdorff measure, and !!
y denotes the component

along the y-axis of the generalized inner normal !! to !.
We are now ready to state our result about the equality case in (2.7).

Theorem 2.2. Let f : Rn → [0, +∞) be a strictly convex function vanishing at 0
and satisfying (2.6). Let ! be an open subset of Rn fulfilling (2.9)–(2.11). Let u be a
nonnegative function from W 1,1

0,y (!) satisfying (2.8). If

∫

!s
f (∇us) dx =

∫

!
f (∇u) dx < ∞, (2.12)

then us is equivalent to u (up to translations along the y-axis).

Let us emphasize that assumptions (2.8)–(2.11) in Theorem 2.2 are essentially sharp,
in that they cannot be removed without effecting the conclusion. Indeed, if (2.8) is
dropped, then functions whose graph is shaped like that represented in Fig. 1 imme-
diately prove that (2.12) may hold even if u does not agree with any translate of
us.

As for the domain !, assumption (2.9) is easily seen to be indispensable. The
example in Fig. 2 demonstrates the necessity of condition (2.11); an easy modification
of that example—see Fig. 3—shows that unbounded domains in the direction y cannot
be allowed, even in the case where !x′ is bounded for Ln−1-a.e. x′ ∈ "n−1(!).

Note that strict convexity of f is also essential in Theorem 2.2. Actually, suppose,
for instance, that f (#) = |#| for # ∈ Rn and let u be any compactly supported func-
tion from W 1,1(Rn), whose level sets are Steiner symmetric about non coincident
hyperplanes parallel to {y = 0}. Then u is not equivalent to any translate of us, but,

Dp(u) = 0 6⇒ u = us

Problem : plateaus in the direction orthogonal to H
u is such that ∇yus vanishes on a set of positive Lebesgue measure

L2
({

(x, y) : ∇yus = 0 , us(x, y) < sup
y

u(x, y)

})
> 0

graphic by A. Cianchi and N. Fusco - 2006
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The Equality Case

Theorem (A. Cianchi & N. Fusco (2006))
Let Ω ⊂ Rn be an open set satisfying some geometrical (essentially
sharp) conditions and let u with no plateaus in the direction xn, then

Dp(u) = 0 ⇒ u ≡ us (up to translations)

What a wrong Ω can cause

678 A. Cianchi, N. Fusco / Advances in Mathematics 203 (2006) 673–728

Fig. 1. The graph of u is on the left; on the right, the graph of us.

Fig. 2. The domain of u is the union of two rectangles.

where Hk stands for k-dimensional Hausdorff measure, and !!
y denotes the component

along the y-axis of the generalized inner normal !! to !.
We are now ready to state our result about the equality case in (2.7).

Theorem 2.2. Let f : Rn → [0, +∞) be a strictly convex function vanishing at 0
and satisfying (2.6). Let ! be an open subset of Rn fulfilling (2.9)–(2.11). Let u be a
nonnegative function from W 1,1

0,y (!) satisfying (2.8). If

∫

!s
f (∇us) dx =

∫

!
f (∇u) dx < ∞, (2.12)

then us is equivalent to u (up to translations along the y-axis).

Let us emphasize that assumptions (2.8)–(2.11) in Theorem 2.2 are essentially sharp,
in that they cannot be removed without effecting the conclusion. Indeed, if (2.8) is
dropped, then functions whose graph is shaped like that represented in Fig. 1 imme-
diately prove that (2.12) may hold even if u does not agree with any translate of
us.

As for the domain !, assumption (2.9) is easily seen to be indispensable. The
example in Fig. 2 demonstrates the necessity of condition (2.11); an easy modification
of that example—see Fig. 3—shows that unbounded domains in the direction y cannot
be allowed, even in the case where !x′ is bounded for Ln−1-a.e. x′ ∈ "n−1(!).

Note that strict convexity of f is also essential in Theorem 2.2. Actually, suppose,
for instance, that f (#) = |#| for # ∈ Rn and let u be any compactly supported func-
tion from W 1,1(Rn), whose level sets are Steiner symmetric about non coincident
hyperplanes parallel to {y = 0}. Then u is not equivalent to any translate of us, but,

A. Cianchi, N. Fusco / Advances in Mathematics 203 (2006) 673– 728 679

Fig. 3. The domain of the function u is unbounded.

as a consequence of the coarea formula for Sobolev functions,

∫

Rn
f (∇u) dx =

∫ ∞

0
P({u > t}) dt =

∫ ∞

0
P({u > t}s) dt

=
∫ ∞

0
P({us > t}) dt =

∫

Rn
f (∇us) dx.

Here, P(E) denotes the perimeter of a set E. Observe that the second equality holds
since P(E) = P(Es) whenever E is equivalent to a translate of Es, and that the third
equality holds because of (2.5). Similar counterexamples can be exhibited also in the
case where there exist a!0 and b ∈ R such that f (!) = a|!| + b just for ! satisfying
t1 " |!|" t2 for some 0" t1 < t2.

To conclude with our comments about Theorem 2.2, let us go back to hypothesis
(2.8). The counterpart of this hypothesis in the case of Schwarz symmetrization, as
appears in [BZ], is that

Ln
(
{∇u⋆ = 0} ∩ {0 < u⋆ < ess sup u}

)
= 0, (2.13)

where u⋆ denotes the Schwarz rearrangement of u. Condition (2.13) is weaker, in
general, than the same condition imposed on u. Thus, one might ask whether (2.8)
could be relaxed on replacing u by us. However, such a replacement is immaterial, as
a consequence of the following result.

Proposition 2.3. Let u be a nonnegative function from W 1,1
0,y (!). Then, for Ln−1-a.e.

x′ ∈ "n−1(!),

L1({y : ∇yu(x′, y)=0, t <u(x′, y)<M(x′)}
)

= L1({y : ∇yu
s(x′, y)=0, t <us(x′, y)<M(x′)}

)

for every t ∈ (0, M(x′)).

We now shift to the more general framework of functions of bounded variation. Here,
a version of the Pólya–Szegö inequality can still be shown to hold, provided that the
involved functional is properly defined. Consider any nonnegative convex function f in

graphic by A. Cianchi and N. Fusco - 2006
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The spherical symmetric case : a first guess

Remark (Counterpart of Brothers and Ziemer)
The previous result can be regarded as a Steiner symmetrization counterpart
of Brothers and Ziemer’s theorem on the spherical symmetry of minimal
rearrangements, i.e. function with

‖∇u‖p = ‖∇u∗‖p

Remark (Stability of Brothers and Ziemer)
The result of Brothers and Ziemer is stable under perturbations of such an
assumption, in the sense that the asymmetry of a minimal rearrangement can
be estimated through Ln ({∇u∗ = 0 , 0 < u∗ < ess-sup u})

First guess
Although the sole Pólya-Szegö deficit Dp(u) of u is not sufficient to measure
the distance of u from us, this should be possible if both Dp(u) and
Ln
({

(x, y) : ∇yus = 0 , us(x, y) < supy u(x, y)
})

are employed
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Counterexample - almost plateaus

(v∗h)′ 6= 0, v′h 6= 0 L1 − a.e.

limh→∞ Dp(vh) = 0 p ≥ 1

‖vh − vs
h‖1 ≥ const > 0

678 A. Cianchi, N. Fusco / Bull. Sci. math. 130 (2006) 675–696

Fig. 2.

The conclusion of Theorem 1.1 holds for functions u from a somewhat larger space than
W

1,p
0 (Ω). In fact, any function from W 1,p(Ω) vanishing just on ∂Ω ∩ (π(Ω)×R) is admissible,

in the sense that functions from the class

W
1,p
0,y (Ω) =

{
u :Ω → R: for every open set ω ! π(Ω) the continuation

by 0 of u outside Ω belongs to W 1,p(ω × R)
}

are taken into account. For simplicity of notations, we state Theorem 1.1 for functions u normal-
ized by

∫

Ω

|∇yu
s |p dx = 1. (1.5)

Of course, the general case immediately follows on applying the result to u/∥∇yu
s∥Lp(Ω).

Theorem 1.1. Let n " 2, and let Ω be a Steiner symmetric open set in Rn. Assume that Ω is
bounded in the direction y and satisfies Ln−1(π(Ω)) < +∞. Set

L = sup
{
|y|: (x′, y) ∈ Ω

}
.

Let p " 2 and let α = min{ 1
2p+6 , 1

4p }. Then, there exists a constant C, depending only on p,

Ln−1(π(Ω)) and L, such that
∫

Ω

∣∣u(x) − us(x)
∣∣dx # C

(
Mus

(
Dp(u)α

) 1
2p′ + Dp(u)α

)
(1.6)

for every nonnegative function u from W
1,p
0,y (Ω) satisfying (1.5). Here, p′ = p

p−1 , the Hölder
conjugate of p.

Deduction
This counterexample, loosely speaking, shows that, when Dp(u) > 0, not only
a large set where ∇yus vanishes, but also a large set where |∇yus| is small,
may allow u to be very asymmetric. Consequently, one can hope to control
the asymmetry of a function u by means of Dp(u) only if we have a control of
the measure on the set where the ∇yus is small
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Our choice of functions

When we can rule out "bad behavior"
Concave functions
α-concave functions (α ∈ (0, 1])
Log-Concave functions with subgraph starshaped w.r.t. a ball
Quasiconcave functions with a positive lower bound on |∇u|

Remark (They are not so bad classes)
The class of functions to which our stability results apply is large
enough to include the solutions of the torsional rigidity problem and the
first eigenfunction of the Laplacian operator with Dirichlet boundary
conditions in smooth convex domains
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Quantitative estimates

∆(u, us) :=

∫

Rn
|∇u|p dz−

∫

Rn
|∇us|p dz

λ(u, us) := inf
h∈R

∫

Rn
|u(x, y + h)− us(x, y)| dxdy

Theorem
D ⊂ Rn bdd open convex set. Let u ∈ W1,p

0 (D) be log-concave. Assume
that the subgraph of u is star-shaped with respect to a ball of radius m.
Then,

λ(u, us) ≤





c
Mn+2

mn+1 |D|
1
p′ ‖∇us‖

2−p
2

Lp ∆(u, us)
1
2 if 1 < p < 2;

c
Mn+2

mn+1 |D|
1
p′∆(u, us)

1
p if p ≥ 2,

where c = c(n, p) and M = max{‖u‖L∞ , outer radius of D}
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Change of perspective : the functions l and b

Ω : projection of Eu on xn = 0

l = l(x′, t) : half measure of the 1-d sections

b = b(x′, t) is the baricenter of the sections
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The representation lemma

Lemma

D ⊂ Rn bounded open set
u ∈ W1,p(D) (p ≥ 1) non-negative, continuous
Eu has no plateaus and satisfies the segment property

⇓
∂tb + ∂tl < 0 and ∂tb− ∂tl > 0 a.e. in Ω

∫

D
|∇u|p dx =

∫

Ω

(1 + |∇x′b +∇x′ l|2)
p
2

|∂tb + ∂tl|p−1 dx′dt+
∫

Ω

(1 + |∇x′b−∇x′ l|2)
p
2

|∂tb− ∂tl|p−1 dx′dt

∫

D
|∇us|p dx = 2

∫

Ω

(1 + |∇x′ l|2)
p
2

|∂tl|p−1 dx′dt
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How to deal with the deficit

∆(u, us) =

∫

Ω

(1 + |∇x′b +∇x′ l|2)
p
2

|∂tb + ∂tl|p−1 +
(1 + |∇x′b−∇x′ l|2)

p
2

|∂tb− ∂tl|p−1 − 2
(1 + |∇x′ l|2)

p
2

|∂tl|p−1 dx′dt

Careful estimates on the second order increment of the function

fp : Rn−1 × (0,∞)→ R fp(x) :=
(1 + |x′|2)

p
2

xp−1
n

⇓
∫

Ω

|∇x′b|√
1 + |∇x′ l|2

dx′dt

︸ ︷︷ ︸
I

+

∫

Ω

|∂tb|
|∂tl|

dx′dt
︸ ︷︷ ︸

II

≤





cLn(D)
1

p′ ‖∇u‖
2−p

2
Lp ∆(u, us)

1
2 p < 2

cLn(D)
1

p′∆(u, us)
1
p p ≥ 2

Aim
We want to get rid of the dependence on l in I and II, since the L1 distance
between u and us can be estimated by the L1 norm of the baricenter b
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Ingredients of the estimates

1 Use convexity of level sets to estimate

1√
1 + |∇x′ l(x′, t)|2

≥ dist(x′, ∂Ωt)√
2M

∀x′ ∈ Ωt,

where M is the maximum between ‖u‖L∞ and the outer radius of D
2 Use log-concavity to estimate

1
|∂tl(x′, t)| ≥

ln 2
M

dist(t, ∂Ωx′).

3 Use weighted Poincare and starshapedness assump. to estimate
∫

Ω

|∇x′b|√
1 + |∇x′ l|2

+

∫

Ω

|∂tb|
|∂tl|

≥
∫

Ω

|∇b| dist((x′, t), ∂Ω) dx′dt

≥ c
(m

M

)n+1
∫

Ω

|b− b0| dx′dt

≥ c
(m

M

)n+1
∫

Rn
|u(x′, xn + b0)− us(x)|dx,

Giovanni Pisante Trends in Non-Linear Anal. - IST - Lisboa 31/07/2014 20 / 21



Thank you
for your attention!
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The Schwarz case for n-symmetric functions

Lemma

D ⊂ Rn bounded open n-symmetric w ∈ W1,p
0 (D) non-negative and

n-symmetric

∫

Rn
|w− w∗| dx ≤





cLn(D)
1
p′+

1
n ‖∇w∗‖

2−p
2

Lp(Rn)∆(w,w∗)
1
2 if 1 < p < 2;

cLn(D)
1
p′+

1
n ∆(w,w∗)

1
p if p ≥ 2,

How to prove it
Coarea formula
Layer cake representation formula
Quantitative isoperimetric inequality
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The theorem for schwarz

∆(u, u∗) :=

∫

Rn
|∇u|p dz−

∫

Rn
|∇u∗|p dz

λ(u, u∗) := inf
h∈R

∫

Rn
|u(x, y + h)− u∗(x, y)| dxdy

Theorem
D ⊂ Rn bdd open convex set. Let u ∈ W1,p

0 (D) be a non-negative and
log-concave function. Assume that the subgraph of u is star-shaped
with respect to a ball of radius m. Then

λ(u, u∗) ≤





c
Mn+2

mn+1 L
n(D)

1
p′ ‖∇u∗‖

2−p
2

Lp ∆(u, u∗)
1
2 if 1 < p < 2;

c
Mn+2

mn+1 L
n(D)

1
p′∆(u, u∗)

1
p if p ≥ 2,

(1)

where c = c(n, p) and M = max{‖u‖L∞ , outer radius of D}
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The theorem for schwarz
Theorem

Let D ⊂ Rn be a bounded open convex set and let u ∈ W1,p
0 (D) be a

non-negative and log-concave function. Assume that the subgraph of u
is star-shaped with respect to a ball of radius m. Then

λ(u, u∗) ≤





c
Mn+2

mn+1 L
n(D)

1
p′ ‖∇u∗‖

2−p
2

Lp ∆(u, u∗)
1
2 if 1 < p < 2;

c
Mn+2

mn+1 L
n(D)

1
p′∆(u, u∗)

1
p if p ≥ 2,

(2)

where c = c(n, p) and M = max{‖u‖L∞ , outer radius of D}

Remark
The idea is to apply Steiner symmetrization n times along the n
coordinate directions so to transform u in a n-symmetric function, and
then to use the previous lemma
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A comment about the proofA comment about the proof

ξ1 ξ2

ς1 ς2

ξs
1 ξs

2

ζ1 ζ2

Figure :

First of all note that the property of the subgraph E of u of being
star-shaped with respect to a ball of radius m is inherited by the
subgraph Es of us. More precisely, if E is star-shaped with respect to
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Remark
The property of the subgraph Eu of u of being star-shaped with respect
to a ball of radius m is inherited by the subgraph Es of us. More
precisely, if E is star-shaped with respect to Bm(ξ), for some ξ = (x, t),
then Es is star-shaped with respect to Bm((x′, 0, t)).
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Thank you
for your attention!

Giovanni Pisante Trends in Non-Linear Anal. - IST - Lisboa 31/07/2014 21 / 21


	The Pólya-Szego principle
	Popular symmetrizations
	The Pólya-Szego inequalities
	Toward the stability : the equality case

	Stability result for the Steiner case
	The main Theorem
	Ideas from the proof


