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Diblock copolymers

- -A-A-A-A-A-A-A-A-B-B-B-B-B-B-B-- --

Chemical incompatibility between the phases = tendency to
macroscopic phase separation

Chemical bonds between the non-affine subchains = long range
effects, pattern formation

different volume fractions == different nanostructure
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Phase boundaries for diblocks

Picture from an article by Choksi, Peletier and Willams 2009
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Tendency towards periodic arrays of interfaces—
observed experimentally and numerically.

double double
spheres cylinders gyroid  diamond  lamellae

0-21% 21-33% 33 -37% 37 - 50%

increasing volume fraction of minority phase polymer

I

Picture from Edwin Thomas’ talk at MSRI 1999
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The Ohta-Kawasaki functional

Denote by wu:Q — IR the function describing the density:

u(x)~1  on phase A " / udx  fixed
u(x)~ 1 on phase 5 Sinsi

£.(u) = g/ﬂwu\zdx + 2/9(1_,12)2& +yNL(u)

where ‘
M) = [ ] Galx.y)utx)uty) didy.
Here Ggq is the Green's function defined by
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The Ohta-Kawasaki functional

Denote by wu:Q — IR the function describing the density:

u(x)~1  on phase A = i/ u dx fixed
u(x)~ 1 on phase 5 Sinsi

£.(u) = g/ﬂwu\zdx + i/ﬂ(l—uz)zdx +yNL(u)

where ‘
NL(u) := /Q/Q Ga(x,y)u(x)u(y) dxdy .
Here Ggq is the Green's function defined by
—AyGa(x,-) =0 — ﬁ in Q,
Ja Ga(x,y)dy =0,
PBC or NBC

and Q = TV (PBC) or Q is bounded and (sufficiently) smooth
(NBC)
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The Ohta-Kawasaki functional: the potential v

Setting ‘
)= [ Galxy)uly) dy.
we have that v solves

—Av=u—m in ¥,
'/)dex:O.
PBC or NBC

where m is the prescribed average of u

m:ﬁ][ udx.
Q
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The Ohta-Kawasaki functional: the nonlocal term rivisited
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The Ohta-Kawasaki functional: the nonlocal term rivisited

Note that
NL(u) = ‘/Q l/Q Ga(x, y)u(y)u(x) dydx = /Q v(x)u(x) dx
= / v(x) (u(x) — m) dx
—_——

Q
=—Av
= / IVv|? dx
JQ

Remark: We have that

19Vl 2y = sup{ /Q (u-m)pdx : o € HYQ). IVl oy = 1}

Hence NL may be regarded as the square of the homogeneous
H~'-norm of u— m.
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The nonlocal isoperimetric problem—the & — 0 limit of O-K
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The nonlocal isoperimetric problem—the & — 0 limit of O-K

The nonlocal isoperimetric problem (NLIP) is given by
minimize J(u) := Perq ({x : u(x) =1}) Jr’)// \Vv|? dx, (NLIP)
Q

over all u e BV(S, {+1}) satisfying

%uﬁm
JQ

—Av=u—m inf,
ka:Q
PBC or NBC

and v satisfying
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NLIP— A ‘fight’ of low surface area versus high oscillation

J(u) = Perg({x : u(x) = 1}) + //ngy (x)u(y) dxdy

~~

attractive
short-range repulsive
interactions long-range

interactions
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NLIP— A ‘fight’ of low surface area versus high oscillation

J(u) :=Perq({x : u(x) =1})+ / / Ga(x, y)u(x)u(y) dxdy

~
attractive

short-range repulsive

interactions long-range

interactions

Ga(x,y) ~ [x— y|N 2

69@&\3
m of
ifon. A M““m

W-l-km fo( malion

NLIP is interesting as a canonical nonlocal perturbation of the classical isoperimetric problem; and as a

model for energy-driven pattern formation.
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The Nonlocal Isoperimetric Problem (NLIP)

We rewrite the functional in a more geometric fashion:

J(E) = Perq(E) + 1~ / |V ve|? dx
JQ

where
—Ave =ug — fugdx inQ
Jove=0
PBC or NBC

and ug = YE — YEe.

min{J(E): E C Q,|E| = m} (NLIP)
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Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of £, and
of J (almost) periodic?
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Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of £, and
of J (almost) periodic?

True in one dimension (Miiller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)

~~ equidistribution of energy

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty,
Cicalese&Spadaro

There are VERY FEW examples of explicit global mininimizers!
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Mathematical challenges: local minimizers

Structure of local minimizers: Can we exhibit local minimizers of &.
and of J that look like lamellae, droplets, gyroids, cylinders....? Can
we provide sufficiency conditions for local minimality?

Choksi&Sternberg, 2007: computation of 9°J at critical points

Ren&Wei, 2002-2008: construction of stable critical configurations with some

of the interesting patterns shown before for the energy J.
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Link between local minimizers of £- and

The link is provided via -convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let (Fy)x be a sequence of lower
semicontinuous and equi-coercive functionals from X to

r(d .
R U {+00}. Assume that F "9 £ and let x be an isolated local
minimizer of F. Then there exist x, — x such that x is a local
minimizers of Fy for k large enough.
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Link between local minimizers of £- and

The link is provided via -convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let (Fy)x be a sequence of lower
semicontinuous and equi-coercive functionals from X to

r(d .
R U {+00}. Assume that F "9 £ and let x be an isolated local
minimizer of F. Then there exist x, — x such that x is a local
minimizers of Fy for k large enough.

Plan:
@ show that 9°J > 0= a critical point is an isolated [!-local
minimizer;
@ thus, the known stable critical configurations are isolated

L-local minimizers:

o by Kohn&Sternberg theory such configurations can be lifted to
locally minimizing configurations for the diffuse energy &..
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Critical points

Recall
J(E) = Perq(E / |Vve|? dx

The Euler-Lagrange equation for C2 minimizers of J(£) with a
volume constraint

(E.L.) Hae(x) + 4yve(x) = A on OE

where Hyr =sum of principal curvatures
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Local Minimizers

Distance between (equivalence classes) of sets:
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Local Minimizers

Distance between (equivalence classes) of sets:

e NBC case:
d(E,F):=|EAF].

e PBC case:
d(E,F) =min|EA(F + 1)

Natural definition: £ C Q. is a (strict) local minimizer if 3§ > 0
s.t.
J(F) > J(E)

whenever F C Q with 0 < d(E, F) < ¢ and |F| = |E|
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Regularity of local minimizers

Easy fact:

’/ ]VVE|2dx—/ |VV/:’2C/X‘§ c|EAF|
Q Q
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Regularity of local minimizers

Easy fact:

’/ ]VVE|2dx—/ |VV/:’2C/X‘§ c|EAF|
Q Q

Another fact:
E is a minimizer with volume constraint +—

E is a minimizer of J(F) + A||F| — |E|| for some large A

Theorem (Sternberg-Topaloglu (2011))

If EC T" is a local minimizer of J, then OE \ ¥ is C>%, for any
a<1, and X is a closed set such that dimy(X) <n—28
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Second variation
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Second variation

Let £ € C? be critical and fix a C? vector field X : Q — Q. Then,
let us consider

®:Q x (—1,1) — Q the associated flow

o0

It = X(®), d(x,0) = x

and set £, = ®(-. t)(E),
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Second variation

Let £ € C? be critical and fix a C? vector field X : Q — Q. Then,
let us consider

®:Q x (—1,1) — Q the associated flow

od
It = X(®), d(x,0) = x

and set £, = ®(-. t)(E),

d2

@J(Et)|

t=0

Assume that
|E¢| = |E.
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Computation of the second variation

Theorem (Choksi-Sternberg 2007)

For, say ) = T" and f := X - vg, one can compute second variation

P I(f) = / (IVoef[? — |B2F2) dH™ 1 +
JOE

"
standard second variation of area

8 / G(x,y) F(x) F(y) dHI~ dH7
JOE JOE

TV
nonlocal contribution

+ 47/ Vv -vfPdH"?t.
JOE

nonlocal contribution

Here, G(x.y)=Green’s function for (=) Laplacian.
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Consequences of the translation invariance

Since J(E) = J(E + tT)
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Consequences of the translation invariance

Since J(E) = J(E + t7)
—  PJE)r-ve(x)]=0 forall 7
Let us define 7 = span{v;....v,} and

={f e HYOE): [f = [fy; =0}

Strict stability then means

2J(E)[f] >0 VfeT+\{0}
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[ local minimality via second variation

Theorem (Acerbi-Fusco-M., Comm. Math. Phys 2013)
Let E C T" be a regular critical set of J such that

O?J(E)f] >0  Vfe TLHOE)\ {0} .

There exists § > 0 s.t. for all F C T" with |F| = |E| and
d(E,F) <o

J(F) > J(E) + God(E, F)?.

Massimiliano Morini
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[ local minimality via second variation

Theorem (Acerbi-Fusco-M., Comm. Math. Phys 2013)
Let E C T" be a regular critical set of J such that
O?J(E)f] >0  Vfe TLHOE)\ {0} .

There exists § > 0 s.t. for all F C T" with |F| = |E| and
d(E,F) <o
J(F) = J(E) + God(E, F)> .

e Extension to NBC: Julin-Pisante, 2013
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Consequences: the Ohta-Kawasaki energy

Proposition

If E is a regular critical point of J with 9?>J(E) > 0, then there
exists a family {u.}.., of strict local minimizers of the diffused
energy E. with [1, ue dx = [1, ug dx, s.t.

Us — UE in  LY(T")

ase — 0.
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Case v = 0: the periodic isoperimetric problem

Corollary

Let E C T" be smooth open set with OE a constant mean
curvature surface. If

/ (VoefP — |Boel2f?) dH™ >0 ¥ f e TH(BE)\ {0},
JOE

then there exist §, C > 0 s.t. for F C T", with |F| = |E| and
d(E,F)<$

Prn(F) > Pra(E) + C[d(E, F)]* .
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Case v = 0: the periodic isoperimetric problem

Corollary

Let E C T" be smooth open set with OE a constant mean
curvature surface. If

/ (VoefP — |Boel2f?) dH™ >0 ¥ f e TH(BE)\ {0},
JOE

then there exist 6, C > 0 s.t. for F C T", with |F| = |E| and
d(E,F)<$

Prn(F) > Pra(E) + C[d(E, F)]* .

e B.White, 1994: local minimality w.r.t. L perturbations

e Morgan-Ros, 2010: local minimality w.r.t. L' perturbations but
for n < 7 and without quantitative estimate
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Application: Global minimality of the single lamella
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Application: Global minimality of the single lamella

n

(P)  Min {JW(E)Pn(E)—F’Y/ [V vel? dx, Ed}
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Application: Global minimality of the single lamella

() Min {4(E) = ProE) 1 [ [Vueldx.  |El=d}

For 0 < d <1 set
L=T""1x]0,d
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Global minimality of the single lamella
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Global minimality of the single lamella

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of
coordinates, global minimizer of the periodic isoperimetric problem.

Then L is also the unique global minimizer of (P), provided -y is
sufficiently small.
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Global minimality of the single lamella

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of
coordinates, global minimizer of the periodic isoperimetric problem.
Then L is also the unique global minimizer of (P), provided -y is
sufficiently small.

Sketch of the proof: Let E, be a minimizer of J,.
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Global minimality of the single lamella

Theorem (Acerbi-Fusco-M.)
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Global minimality of the single lamella

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of
coordinates, global minimizer of the periodic isoperimetric problem.
Then L is also the unique global minimizer of (P), provided -y is
sufficiently small.

Sketch of the proof: Let E, be a minimizer of J,.
Step 1: As v — 0 we have E, — L in L1.
Step 2: For v small L is strictly stable for J,.

Step 4: For v small L is an L! isolated local minimizer, uniformly
in 7. Thus E, = L for  small.
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Global minimality of the single lamella

Let n = 2. Theorem + Howards-Hutchings-Morgan, 1999
4

1 1
If =~ <d<1- >, Listhe unique global minimizer of (P) in T?

s s

provided 7 is small (see also Sternberg-Topaloglu, 2011)
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Global minimality of the single lamella

Let n = 2. Theorem + Howards-Hutchings-Morgan, 1999
4

1 1
If =~ <d<1- >, Listhe unique global minimizer of (P) in T?

s s

provided 7 is small (see also Sternberg-Topaloglu, 2011)

Let n = 3. Theorem + a result of Hadwiger, 1972
4

1 1
There exist eg,v0 > 0 s.t. if 5 €0 <d< 3 +e0, 0< vy <0

L is the unique global minimizer of (P) in T3
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Critical 2d k-lamellar patterns

We consider only the case m = 0
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Critical 2d k-lamellar patterns

We consider only the case m = 0

!

Yk
Yk—1

Q. = (0,a) x (0,1)

Y2
yi
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Critical 2d k-lamellar patterns

We consider only the case m = 0

!

Yk
Yk—1
Q,:=(0,a) x (0,1)
2
r1
0 a
oCriticality:»yjzzé—;l j=1...,k
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Local minimality of 2d lamellar patterns

Theorem (M.-Sternberg, 2013)

For any positive integer k,
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Local minimality of 2d lamellar patterns

Theorem (M.-Sternberg, 2013)

For any positive integer k, if

a </,

then the k-lamellar critical point uy is an isolated L'-local
minimizer in Q5 := (0,a) x (0,1);
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Local minimality of 2d lamellar patterns

Theorem (M.-Sternberg, 2013)

For any positive integer k, if

a </,

then the k-lamellar critical point uy is an isolated L'-local
minimizer in Q5 := (0, a) x (0,1), i.e., there exist § and C > 0 such
that

J(w) > J(ui) + Cllux = wliFrq,

provided |[uy — w[;1q,) <6 and [o w = [q u.
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Local minimality of 2d lamellar patterns: ingredients
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Local minimality of 2d lamellar patterns: ingredients

e Spectral analysis: a < w4/ % implies that

O?J(ug)[f] >0 forall f € HY(I)\ 0 with / fdH' =0.
JI
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O?J(ug)[f] >0 forall f € HY(I)\ 0 with / fdH' =0.
JI

e Extension of the Acerbi-Fusco-M.
9%J > 0= L local minimality

result to the case of rectangular domain with NBC
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Local minimality of 2d lamellar patterns: ingredients

e Spectral analysis: a < w4/ % implies that

O?J(ug)[f] >0 forall f € HY(I)\ 0 with / fdH' =0.
JI

e Extension of the Acerbi-Fusco-M.
9%J > 0= L local minimality
result to the case of rectangular domain with NBC

e Remark: Morphological instability may only come from wriggling and
corrugations: corrugation wriggling
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Cascade of lamellar global minimizers in thin rectangles

Theorem (M.-Sternberg, 2013)
Fix any v > 0. Then for k(~) minimizing the 1d energy

1d o i
P4u) = k+ T

Uk(y) is the unique global minimizer of J in (0,¢) x (0, 1) for e
sufficiently small.
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Step 1: -convergence

Consider (NLIP) posed on a thin rectangle Q. := (0,2) x (0, 1):

min  Jo_(u) := Perq. ({x: u(x) =1}) +1 /Q IVv[? dx,

under the constraint [, v = 0.
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Step 1: -convergence

Consider (NLIP) posed on a thin rectangle Q. := (0,2) x (0, 1):

min  Jo_(u) := Perq. ({x: u(x) =1}) +1 /Q IVv[? dx,

under the constraint [, v = 0.

After rescaling onto the (fixed) unit square ; and dividing by =
one checks that Jo_ -converges as = — 0 to the one-dimensional
energy

1
S (u) == # of jumps + ~ / vy2 dy
Jo

for u e BV((0,1); {+1}), with [, u(y)dy = 0, and where
v = v(y) solves

—V"=ufor0<y <1, V/(0)=0=V(1).
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Step 2: Explicit calculation of 1d minimizers

“Perimeter" in 1d just counts number of jumps, located say at

Ak
{yitjzs-
Also criticality condition « + 4~v = constant reduces to simply

v(yj) = constant (since curvature = 0)
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Step 2: Explicit calculation of 1d minimizers

“Perimeter" in 1d just counts number of jumps, located say at

Ak
{yitjzs-
Also criticality condition « + 4~v = constant reduces to simply

v(yj) = constant (since curvature = 0)
Easily check that only critical points are v given by

u(y) = 1 for O<y<yi, yo<y<ys ..., Vi—1 <y < yk
: =1 for yi<y<yry3<y<ya..., y<y<l

where y; = % for j = 1,2,..., k and the derivative of the

corresponding vy is a “sawtooth function."
(For simplicity only, fix m = 0.)
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Explicit calculation of 1d minimizers

) —

i

The 5-jump critical point us with m = 0 and the derivative of the
corresponding vs solving

/!

—vi =us for0<y <1, vi(0)=0=v(1).
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Step 2: Explicit calculation of 1d minimizers

Easy to compute that

Jld — k A/

() =k+ e

so given any -, one can optimize over k to find global minimizer is
Ul(y) with
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Step 2: Explicit calculation of 1d minimizers

Easy to compute that

Jld — k A/
() =k + 15

so given any -, one can optimize over k to find global minimizer is
Ul(y) with

k() ~~*3 for v > 1.
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Step 3: Proof of global minimality

Fix a < 74/ % Let u. be a global minimizer in Q. and let

0 (x,y) = u:(5x,y)
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Step 3: Proof of global minimality

Fix a < 74/ % Let u. be a global minimizer in Q. and let

bi-(x,y) == u(5x,y)
By '-convergence
L~IL — Uk(~) in Ll(Qa)
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Step 3: Proof of global minimality

Fix a < 74/ % Let u. be a global minimizer in Q. and let

be(x,y) == ue(5x,y)
By '-convergence
L~IL~ — Uk(~) in Ll(Qa)
Let uf the function in BV/(2,) obtained by 2 — 1 reflections of u..

(1) _
2 2 ug ' = Ug
ué) (2)

(k)

u,
: o (x, y) = k=D (x, 2k — 1)z — )

0 e 2 a—c¢ a
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Step 3: Proof of global minimality: conclusion

Note

ui — g I,y = Nlte — Uy ll.) — 0

Massimiliano Morini Local and global minimality ... 36/37
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Note

luf — urep ez, = 18 — ki, — 0
Thus for € small enough

Jo, (1) > Ja, (tk)) + C ||ty = U s
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Thus for € small enough

Jo, (1) > Ja, (tk)) + C ||ty = U s

But Jo,(uf) = 2Jq.(ue),
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Step 3: Proof of global minimality: conclusion

Note

luf — urep ez, = 18 — ki, — 0
Thus for € small enough

Jo, (1) > Ja, (tk)) + C ||ty = U s

But Jo,(uf) = 2Ja.(u:), Ja,(Uk)) = 2Ja.(UkH)),
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Step 3: Proof of global minimality: conclusion

Note

W,y = llte =tk g, — 0

Thus for ¢ smaII enough

Ja,(ul) > Jo, (uk(y)) + C [Jugcy) “arHilma)

But Jo,(ul) = 2Ja.(ue), Jo,(uk(y)) = 2Ja.(uk()), and

2 22 2
L1(Q.) — Huk U5HL1(Q::)

Huk( Uﬁ
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Step 3: Proof of global minimality: conclusion

Note

W,y = llte =tk g, — 0

Thus for ¢ smaII enough

Ja,(ul) > Jo, (uk(y)) + C [Jugcy) “5Hi1<na)

But Jo, (1) = 20, (1), Jo, (k) = 2. (un(y)). and

2 22 2
L1(Q.) — Huk UfHLl(QF)

Huk( Uﬁ

Thus, for € small enough

Ja.(u:) > Ja.(ug(y)) + Cg [ UEHil(QE)
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Step 3: Proof of global minimality: conclusion

Note

W,y = llte =tk g, — 0

Thus for ¢ smaII enough

Ja,(ul) > Jo, (uk(y)) + C [Jugcy) “arHilma)

But Jo,(ul) = 2Ja.(ue), Jo,(uk(y)) = 2Ja.(uk()), and

2 22 2
L1(Q.) — Huk U5HL1(Q::)

Huk( Uﬁ

Thus, for € small enough

Ja.(u:) > Ja.(ug(y)) + CS [ UEHil(QE)

4

Us = Ug(y) for & small
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