Local and global minimality results for a nonlocal isoperimetric problem

Massimiliano Morini

(Collaborators: E. Acerbi, N. Fusco, P. Sternberg)

Dipartimento di Matematica e Informatica
Università di Parma

Lisbon, July 31, 2014
Diblock copolymers

Polymer = molecular chain made up of several molecules with high chemical affinity

Diblock Copolymer = complex macromolecule made up of two different molecular chains chemically bonded

Polymer = molecular chain made up of several molecules with high chemical affinity
Diblock copolymers

Polymer = molecular chain made up of several molecules with high chemical affinity

Diblock Copolymer = complex macromolecule made up of two different molecular chains chemically bonded

Polymer = molecular chain made up of several molecules with high chemical affinity

Diblock Copolymer = complex macromolecule made up of two different molecular chains chemically bonded

Chemical incompatibility between the non-affine subchains
Diblock copolymers

Chemical incompatibility between the phases \(\implies\) tendency to macroscopic phase separation
Diblock copolymers

\[
\]

Chemical incompatibility between the phases \implies tendency to macroscopic phase separation

Chemical bonds between the non-affine subchains \implies long range effects, pattern formation
Diblock copolymers

\[\cdots A\cdots A\cdots A\cdots A\cdots A\cdots A\cdots A\cdots B\cdots B\cdots B\cdots B\cdots B\cdots B\cdots B\cdots \cdots \]

Chemical incompatibility between the phases \implies tendency to macroscopic phase separation

Chemical bonds between the non-affine subchains \implies long range effects, pattern formation

different volume fractions \implies different nanostructure
Phase boundaries for diblocks

Picture from an article by Choksi, Peletier and Williams 2009
Tendency towards periodic arrays of interfaces—observed experimentally and numerically.

Picture from Edwin Thomas’ talk at MSRI 1999
The Ohta-Kawasaki functional

Denote by \(u : \Omega \rightarrow \mathbb{R} \) the function describing the density:

\[
\begin{cases}
 u(x) \approx 1 & \text{on phase } A \\
 u(x) \approx -1 & \text{on phase } B
\end{cases}
\]

\[m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \quad \text{fixed} \]
The Ohta-Kawasaki functional

Denote by \(u : \Omega \to \mathbb{R} \) the function describing the density:

\[
\begin{align*}
 u(x) &\simeq 1 \quad \text{on phase } A \\
 u(x) &\simeq -1 \quad \text{on phase } B
\end{align*}
\]

\[
m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \quad \text{fixed}
\]

\[
\mathcal{E}_\varepsilon(u) = \varepsilon \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 \, dx + \gamma NL(u)
\]

Here \(G_\Omega \) is the Green's function defined by

\[
\begin{align*}
 -\Delta y \, G_\Omega(x, \cdot) &= \delta_{x-1} \quad \text{in } \Omega, \\
 \int_{\Omega} G_\Omega(x, y) \, dy &= 0
\end{align*}
\]

PBC or NBC and \(\Omega = T^N(PBC) \) or \(\Omega \) is bounded and (sufficiently) smooth (NBC).
Denote by \(u : \Omega \to \mathbb{R} \) the function describing the density:

\[
\begin{cases}
 u(x) \approx 1 & \text{on phase } A \\
 u(x) \approx -1 & \text{on phase } B
\end{cases}
\]

\[
m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \quad \text{fixed}
\]

\[
\mathcal{E}_\varepsilon(u) = \varepsilon \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 \, dx + \gamma \text{NL}(u)
\]

where

\[
\text{NL}(u) := \int_{\Omega} \int_{\Omega} G_\Omega(x, y)u(x)u(y) \, dx \, dy.
\]
The Ohta-Kawasaki functional

Denote by \(u : \Omega \rightarrow \mathbb{R} \) the function describing the density:

\[
\begin{cases}
 u(x) \approx 1 & \text{on phase } A \\
 u(x) \approx -1 & \text{on phase } B
\end{cases}
\]

\[
m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \quad \text{fixed}
\]

The Ohta-Kawasaki energy density is:

\[
\mathcal{E}_\varepsilon(u) = \varepsilon \int_{\Omega} \left| \nabla u \right|^2 \, dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 \, dx + \gamma NL(u)
\]

where

\[
NL(u) := \int_{\Omega} \int_{\Omega} G_\Omega(x, y) u(x) u(y) \, dx \, dy.
\]

Here \(G_\Omega \) is the Green’s function defined by

\[
\begin{cases}
 -\Delta_y G_\Omega(x, \cdot) = \delta_x - \frac{1}{|\Omega|} & \text{in } \Omega, \\
 \int_{\Omega} G_\Omega(x, y) \, dy = 0, \\
 \text{PBC or NBC}
\end{cases}
\]
The Ohta-Kawasaki functional

Denote by \(u : \Omega \to \mathbb{R} \) the function describing the density:

\[
\begin{align*}
\begin{cases}
 u(x) \simeq 1 & \text{on phase } A \\
 u(x) \simeq -1 & \text{on phase } B
\end{cases}
\end{align*}
\]

\[
m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \quad \text{fixed}
\]

\[
\mathcal{E}_\varepsilon(u) = \varepsilon \int_{\Omega} |\nabla u|^2 \, dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 \, dx + \gamma NL(u)
\]

where

\[
NL(u) := \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(x) u(y) \, dx \, dy.
\]

Here \(G_{\Omega} \) is the Green’s function defined by

\[
\begin{align*}
\begin{cases}
 -\Delta_y G_{\Omega}(x, \cdot) = \delta_x - \frac{1}{|\Omega|} & \text{in } \Omega, \\
 \int_{\Omega} G_{\Omega}(x, y) \, dy = 0, \\
 \text{PBC or NBC}
\end{cases}
\end{align*}
\]

and \(\Omega = \mathbb{T}^N \) (PBC) or \(\Omega \) is bounded and (sufficiently) smooth (NBC)
Setting

\[v(x) := \int_{\Omega} G_\Omega(x, y) u(y) \, dy , \]

we have that \(v \) solves

\[
\begin{cases}
-\Delta v = u - m & \text{in } \Omega, \\
\int_\Omega v \, dx = 0, \\
PBC \text{ or } NBC
\end{cases}
\]

where \(m \) is the prescribed average of \(u \)

\[m := \int_\Omega u \, dx . \]
The Ohta-Kawasaki functional: the potential \(\nu \)

Setting

\[
\nu(x) := \int_{\Omega} G_\Omega(x, y) u(y) \, dy ,
\]

we have that \(\nu \) solves

\[
\begin{cases}
-\Delta \nu = u - m \quad \text{in } \Omega, \\
\int_{\Omega} \nu \, dx = 0, \\
\text{PBC or NBC}
\end{cases}
\]

where \(m \) is the prescribed average of \(u \)

\[
m := \int_{\Omega} u \, dx.
\]
The Ohta-Kawasaki functional: the potential \(\nu \)

Setting

\[
v(x) := \int_{\Omega} G_{\Omega}(x, y) u(y) \, dy ,
\]

we have that \(\nu \) solves

\[
\left\{ \begin{array}{l}
-\Delta \nu = u - m \quad \text{in } \Omega, \\
\int_{\Omega} \nu \, dx = 0, \\
PBC \text{ or NBC}
\end{array} \right.
\]

where \(m \) is the prescribed average of \(u \)

\[
m := \int_{\Omega} u \, dx .
\]
Note that

\[NL(u) = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy \, dx = \int_{\Omega} v(x) u(x) \, dx \]

\[= \int_{\Omega} v(x) (u(x) - m) \, dx \]

\[= \int_{\Omega} |\nabla v|^2 \, dx \]

Remark: We have that

\[\| \nabla v \|_{L^2(\Omega)} = \sup \left\{ \int_{\Omega} (u - m) \phi \, dx : \phi \in H^1(\Omega), \| \nabla \phi \|_{L^2(\Omega)} = 1 \right\} \]

Hence \(NL \) may be regarded as the square of the homogeneous \(H^{-1} \)-norm of \(u - m \).
Note that

\[NL(u) = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy \, dx = \int_{\Omega} v(x) u(x) \, dx \]

\[= \int_{\Omega} v(x) (u(x) - m) \, dx \]

\[= \int_{\Omega} \nabla \psi^2 \, dx \]

Remark: We have that

\[\| \nabla \psi \|_{L^2(\Omega)} = \sup \left\{ \int_{\Omega} (u - m) \phi \, dx : \phi \in H^1(\Omega), \| \nabla \phi \|_{L^2(\Omega)} = 1 \right\} \]

Hence \(NL \) may be regarded as the square of the homogeneous \(H^{-1} \)-norm of \(u - m \).
The Ohta-Kawasaki functional: the nonlocal term revisited

Note that

\[NL(u) = \int_\Omega \int_\Omega G_\Omega(x, y) u(y) u(x) \, dy \, dx = \int_\Omega v(x) u(x) \, dx \]

\[= \int_\Omega v(x) (u(x) - m) \, dx \]

\[= -\Delta v \]

\[= \int_\Omega |\nabla v|^2 \, dx \]

Remark: We have that

\[\|\nabla v\|_{L^2(\Omega)} = \sup \left\{ \int_\Omega (u - m) \phi \, dx : \phi \in H^1(\Omega), \|\nabla \phi\|_{L^2(\Omega)} = 1 \right\} \]

Hence \(NL \) may be regarded as the square of the homogeneous \(H^{-1} \) norm of \(u - m \).
Note that

\[NL(u) = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy \, dx = \int_{\Omega} v(x) u(x) \, dx \]

\[= \int_{\Omega} v(x) (u(x) - m) \, dx = -\Delta v \]

\[= \int_{\Omega} |\nabla v|^2 \, dx \]

Remark: We have that

\[\|\nabla v\|_{L^2(\Omega)} = \sup \left\{ \int_{\Omega} (u - m) \varphi \, dx : \varphi \in H^1(\Omega), \|\nabla \varphi\|_{L^2(\Omega)} = 1 \right\} \]

Hence \(NL \) may be regarded as the square of the homogeneous \(H^{-1} \)-norm of \(u - m \).
Note that

\[\mathcal{N}_L(u) = \int_\Omega \int_\Omega G_\Omega(x, y) u(y) u(x) \, dy \, dx = \int_\Omega v(x) u(x) \, dx \]

\[= \int_\Omega v(x) (u(x) - m) \, dx \]

\[= -\Delta v \]

\[= \int_\Omega |\nabla v|^2 \, dx \]

Remark: We have that

\[\|\nabla v\|_{L^2(\Omega)} = \sup \left\{ \int_\Omega (u - m) \varphi \, dx : \varphi \in H^1(\Omega), \|\nabla \varphi\|_{L^2(\Omega)} = 1 \right\} \]

Hence \(\mathcal{N}_L \) may be regarded as the square of the homogeneous \(H^{-1} \)-norm of \(u - m \).
Note that

\[NL(u) = \int_{\Omega} \int_{\Omega} G_\Omega(x, y) u(y) u(x) \, dy \, dx = \int_{\Omega} v(x) u(x) \, dx \]

\[= \int_{\Omega} v(x) (u(x) - m) \, dx \]

\[= -\Delta v \]

\[= \int_{\Omega} |\nabla v|^2 \, dx \]

Remark: We have that

\[\|\nabla v\|_{L^2(\Omega)} = \sup \left\{ \int_{\Omega} (u - m) \varphi \, dx : \varphi \in H^1(\Omega), \|\nabla \varphi\|_{L^2(\Omega)} = 1 \right\} \]

Hence \(NL \) may be regarded as the square of the homogeneous \(H^{-1} \)-norm of \(u - m \).
The nonlocal isoperimetric problem—the $\varepsilon \to 0$ limit of O-K

The nonlocal isoperimetric problem (NLIP) is given by

$$\min J(u) := \text{Per}_\Omega \left(\{ x : u(x) = 1 \} \right) + \gamma \int_\Omega |\nabla v|^2 \, dx,$$

over all $u \in BV(\Omega, \{\pm 1\})$ satisfying

$$-\int_\Omega udx = m$$

and v satisfying

$$-\Delta v = u - m \quad \text{in} \quad \Omega,$$

$$\int_\Omega v \, dx = 0,$$

PBC or NBC.
The nonlocal isoperimetric problem (NLIP) is given by

\[
\text{minimize } J(u) := \text{Per}_\Omega \left(\{ x : u(x) = 1 \} \right) + \gamma \int_\Omega |\nabla v|^2 \, dx, \quad (NLIP)
\]

over all \(u \in BV(\Omega, \{\pm 1\}) \) satisfying

\[
\int_\Omega u \, dx = m
\]

and \(v \) satisfying

\[
\begin{cases}
-\Delta v = u - m & \text{in } \Omega, \\
\int_\Omega v \, dx = 0, \\
PBC \text{ or NBC}
\end{cases}
\]
$J(u) := \text{Per}_\Omega(\{x : u(x) = 1\}) + \gamma \int_\Omega \int_\Omega G_\Omega(x, y)u(x)u(y) \, dx \, dy$

$G_\Omega(x, y) \sim \frac{1}{|x-y|^{N-2}}$

attractive short-range interactions

repulsive long-range interactions
NLIP—A ‘fight’ of low surface area versus high oscillation

\[J(u) := \text{Per}_\Omega(\{x : u(x) = 1\}) + \gamma \int_\Omega \int_\Omega G_\Omega(x, y)u(x)u(y) \, dx \, dy \]

attractive short-range interactions

repulsive long-range interactions

\[G_\Omega(x, y) \sim \frac{1}{|x-y|^{N-2}} \]
NLIP – A ‘fight’ of low surface area versus high oscillation

\[J(u) := \text{Per}_\Omega(\{ x : u(x) = 1 \}) + \gamma \int_\Omega \int_\Omega G_\Omega(x, y) u(x) u(y) \, dx \, dy \]

- \text{attractive short-range interactions}
- \text{repulsive long-range interactions}

\[G_\Omega(x, y) \sim \frac{1}{|x-y|^{N-2}} \]

NLIP is interesting as a canonical nonlocal perturbation of the classical isoperimetric problem; and as a model for energy-driven pattern formation.
We rewrite the functional in a more geometric fashion:
We rewrite the functional in a more geometric fashion:

\[J(E) = \text{Per}_\Omega(E) + \gamma \int_\Omega |\nabla v_E|^2 \, dx \]

where

\[
\begin{cases}
-\Delta v_E = u_E - \int u_E \, dx & \text{in } \Omega \\
\int_\Omega v_E = 0 \\
PBC \text{ or NBC}
\end{cases}
\]

and \(u_E := \chi_E - \chi_{E^c} \).
The Nonlocal Isoperimetric Problem (NLIP)

We rewrite the functional in a more geometric fashion:

\[J(E) = \text{Per}_\Omega(E) + \gamma \int_\Omega |\nabla v_E|^2 \, dx \]

where

\[\begin{cases}
-\Delta v_E = u_E - \int u_E \, dx & \text{in } \Omega \\
\int_\Omega v_E = 0 & \text{PBC or NBC}
\end{cases} \]

and \(u_E := \chi_E - \chi_{E^c} \).

\[\min \{ J(E) : E \subset \Omega, |E| = m \} \quad (\text{NLIP}) \]
Structure of global minimizers: are the global minimizers of E_ε and of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)

\Rightarrow equidistribution of energy

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!
Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of \mathcal{E}_ε and of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009) ➔ equidistribution of energy

Droplet minimizers: Choksi & Peletier, Muratov, Goldman Muratov & Serfaty, Cicalese & Spadaro

There are VERY FEW examples of explicit global minimizers!
Structure of global minimizers: are the global minimizers of E_ε and of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)

Equidistribution of energy

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty, Cicalés&Spadaro

There are VERY FEW examples of explicit global minimizers!
Structure of global minimizers: are the global minimizers of E_ε and of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)

\leadsto equidistribution of energy

Droplet minimizers: Choksi&Peletier, Muratov, Goldman, Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!
Structure of global minimizers: are the global minimizers of E_ε and of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)

\rightsquigarrow equidistribution of energy

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!
Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of E_ε and of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)

\Rightarrow equidistribution of energy

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!
Structure of local minimizers: Can we exhibit local minimizers of E_ε and of J that look like lamellae, droplets, gyroids, cylinders....? Can we provide sufficiency conditions for local minimality?

Choksi & Sternberg, 2007: computation of $\partial^2 J$ at critical points

Ren & Wei, 2002–2008: construction of stable critical configurations with some of the interesting patterns shown before for the energy J.

Massimiliano Morini
Structure of local minimizers: Can we exhibit local minimizers of \mathcal{E}_ϵ and of J that look like lamellae, droplets, gyroids, cylinders....? Can we provide sufficiency conditions for local minimality?

Choksi&Sternberg, 2007: computation of $\nabla^2 J$ at critical points

Ren&Wei, 2002–2008: construction of stable critical configurations with some of the interesting patterns shown before for the energy J.
Structure of local minimizers: Can we exhibit local minimizers of \mathcal{E}_ε and of J that look like lamellae, droplets, gyroids, cylinders....? Can we provide sufficiency conditions for local minimality?

Choksi&Sternberg, 2007: computation of $\partial^2 J$ at critical points

Ren&Wei, 2002–2008: construction of stable critical configurations with some of the interesting patterns shown before for the energy J.
Structure of local minimizers: Can we exhibit local minimizers of E_ε and of J that look like lamellae, droplets, gyroids, cylinders....? Can we provide *sufficiency conditions* for local minimality?

Choksi & Sternberg, 2007: computation of $\partial^2 J$ at critical points

Ren & Wei, 2002–2008: construction of *stable critical configurations* with some of the interesting patterns shown before for the energy J.
The link is provided via Γ-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizer of F_k for k large enough.

Plan:

- show that $\partial^2 J > 0 \Rightarrow$ a critical point is an isolated L^1-local minimizer;
- thus, the known stable critical configurations are isolated L^1-local minimizers;
- by Kohn&Sternberg theory such configurations can be lifted to locally minimizing configurations for the diffuse energy E_ε.
The link is provided via Γ-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \rightarrow x$ such that x_k is a local minimizers of F_k for k large enough.

Plan:

- show that $\partial^2 J > 0 \Rightarrow$ a critical point is an isolated L^1-local minimizer;
- thus, the known stable critical configurations are isolated L^1-local minimizers;
- by Kohn&Sternberg theory such configurations can be lifted to locally minimizing configurations for the diffuse energy \mathcal{E}_ε.
The link is provided via Γ-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizer of F_k for k large enough.

Plan:

- show that $\partial^2 J > 0 \Rightarrow$ a critical point is an isolated L^1-local minimizer;
- thus, the known stable critical configurations are isolated L^1-local minimizers;
- by Kohn&Sternberg theory such configurations can be lifted to locally minimizing configurations for the diffuse energy \mathcal{E}_ε.
The link is provided via Γ-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizers of F_k for k large enough.

Plan:
- show that $\partial^2 J > 0$ \Rightarrow a critical point is an isolated L^1-local minimizer;
- thus, the known stable critical configurations are isolated L^1-local minimizers;
- by Kohn&Sternberg theory such configurations can be lifted to locally minimizing configurations for the diffuse energy \mathcal{E}_ε.
The link is provided via Γ-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizers of F_k for k large enough.

Plan:

- show that $\partial^2 J > 0 \Rightarrow$ a critical point is an isolated L^1-local minimizer;
- thus, the known stable critical configurations are isolated L^1-local minimizers;
- by Kohn&Sternberg theory such configurations can be lifted to locally minimizing configurations for the diffuse energy E_ε.
Recall
Recall

\[J(E) = \text{Per}_\Omega(E) + \gamma \int_{\Omega} |\nabla v_E|^2 \, dx \]
Recall

\[J(E) = \text{Per}_\Omega(E) + \gamma \int_\Omega |\nabla v_E|^2 \, dx \]

The Euler-Lagrange equation for \(C^2 \) minimizers of \(J(E) \) with a volume constraint

\[(E.L.) \quad H_{\partial E}(x) + 4\gamma v_E(x) = \lambda \quad \text{on } \partial E\]

where \(H_{\partial E} = \text{sum of principal curvatures} \)
Distance between (equivalence classes) of sets:

- **NBC case:** $d(E, F) = |E \triangle F|$.
- **PBC case:** $d(E, F) = \min_{\tau} |E \triangle (F + \tau)|$.

Natural definition: $E \subset \Omega$, is a (strict) local minimizer if $\exists \delta > 0$ s.t. $J(F) > J(E)$ whenever $F \subset \Omega$ with $0 < d(E, F) < \delta$ and $|F| = |E|$.
Distance between (equivalence classes) of sets:

- **NBC case:**
 \[d(E, F) := |E \triangle F| . \]

- **PBC case:**
 \[d(E, F) = \min \tau |E \triangle (F + \tau)| . \]
Distance between (equivalence classes) of sets:

- **NBC case:**
 \[d(E, F) := |E \triangle F|. \]

- **PBC case:**
 \[d(E, F) = \min_{\tau} |E \triangle (F + \tau)| \]
Distance between (equivalence classes) of sets:

- **NBC case:**
 \[d(E, F) := |E \triangle F| . \]

- **PBC case:**
 \[d(E, F) = \min_{\tau} |E \triangle (F + \tau)| . \]

Natural definition: \(E \subset \Omega \), is a (strict) local minimizer if \(\exists \delta > 0 \) s.t.

\[J(F) > J(E) \]

whenever \(F \subset \Omega \) with \(0 < d(E, F) < \delta \) and \(|F| = |E| \).
Regularity of local minimizers

Easy fact:

\[\left| \int_{\Omega} |\nabla v_E|^2 \, dx - \int_{\Omega} |\nabla v_F|^2 \, dx \right| \leq c |E \Delta F| \]
Regularity of local minimizers

Easy fact:

\[\left| \int_{\Omega} |\nabla v_E|^2 \, dx - \int_{\Omega} |\nabla v_F|^2 \, dx \right| \leq c |E \Delta F| \]

Another fact:

\[E \text{ is a minimizer with volume constraint} \iff \]
\[E \text{ is a minimizer of } J(F) + \Lambda ||F| - |E|| \text{ for some large } \Lambda \]
Regularity of local minimizers

Easy fact:

\[\left| \int_{\Omega} |\nabla v_E|^2 \, dx - \int_{\Omega} |\nabla v_F|^2 \, dx \right| \leq c |E \Delta F| \]

Another fact:

\[E \text{ is a minimizer with volume constraint } \iff \]

\[E \text{ is a minimizer of } J(F) + \Lambda ||F|| - ||E|| \text{ for some large } \Lambda \]

Theorem (Sternberg-Topaloglu (2011))

If \(E \subset \mathbb{T}^n \) is a local minimizer of \(J \), then \(\partial E \setminus \Sigma \) is \(C^{3,\alpha} \), for any \(\alpha < 1 \), and \(\Sigma \) is a closed set such that \(\dim_{\mathcal{H}}(\Sigma) \leq n - 8 \)
Let $E \in C^2$ be critical and fix a C^2 vector field $X : \Omega \mapsto \Omega$. Then, let us consider $\Phi : \Omega \times (-1, 1) \mapsto \Omega$ the associated flow $\frac{\partial \Phi}{\partial t} = X(\Phi)$, $\Phi(x, 0) = x$ and set $E_t := \Phi(\cdot, t)(E)$.

Assume that $|E_t| = |E|$.
Let $E \in C^2$ be critical and fix a C^2 vector field $X : \Omega \mapsto \Omega$. Then, let us consider

$\Phi : \Omega \times (-1, 1) \mapsto \Omega$ the associated flow

$$\frac{\partial \Phi}{\partial t} = X(\Phi), \quad \Phi(x, 0) = x$$

and set $E_t := \Phi(\cdot, t)(E)$,
Let $E \in C^2$ be critical and fix a C^2 vector field $X : \Omega \mapsto \Omega$. Then, let us consider

$\Phi : \Omega \times (-1, 1) \mapsto \Omega$ the associated flow

$$\frac{\partial \Phi}{\partial t} = X(\Phi), \quad \Phi(x, 0) = x$$

and set $E_t := \Phi(\cdot, t)(E)$,

$$\frac{d^2}{dt^2} J(E_t) \bigg|_{t=0}$$
Let $E \in C^2$ be critical and fix a C^2 vector field $X : \Omega \mapsto \Omega$. Then, let us consider

$\Phi : \Omega \times (-1,1) \mapsto \Omega$ the associated flow

$$\frac{\partial \Phi}{\partial t} = X(\Phi), \quad \Phi(x,0) = x$$

and set $E_t := \Phi(\cdot, t)(E)$,

$$\frac{d^2}{dt^2} J(E_t) \bigg|_{t=0}$$

Assume that

$$|E_t| = |E|.$$
Theorem (Choksi-Sternberg 2007)

For, say $\Omega = \mathbb{T}^n$ and $f := X \cdot \nu_E$, one can compute second variation

$$\partial^2 J(f) := \int_{\partial E} \left(|\nabla_E f|^2 - |B|^2 f^2 \right) d\mathcal{H}^{n-1} +$$

\begin{align*}
\text{standard second variation of area} & \\
8\gamma \int_{\partial E} \int_{\partial E} G(x, y) f(x) f(y) d\mathcal{H}^{n-1}_x d\mathcal{H}^{n-1}_y & \\
\text{nonlocal contribution} & \\
+ 4\gamma \int_{\partial E} \nabla v \cdot \nu f^2 d\mathcal{H}^{n-1} & \\
\text{nonlocal contribution} & \\
\end{align*}

Here, $G(x, y) =$ Green’s function for $(-)$ Laplacian.
Consequences of the translation invariance

Since \(J(E) = J(E + t\tau) \)
Consequences of the translation invariance

Since $J(E) = J(E + t\tau)$

$$\iff \partial^2 J(E)[\tau \cdot \nu_E(x)] = 0 \quad \text{for all } \tau$$
Consequences of the translation invariance

Since \(J(E) = J(E + t\tau) \)

\[\iff \quad \partial^2 J(E)[\tau \cdot \nu_E(x)] = 0 \quad \text{for all } \tau \]

Let us define \(T = \text{span}\{\nu_1, \ldots, \nu_n\} \) and

\[T^\perp = \{ f \in H^1(\partial E) : \int f = \int f \nu_i = 0 \} \]
Consequences of the translation invariance

Since \(J(E) = J(E + t\tau) \)

\[\Rightarrow \quad \partial^2 J(E)[\tau \cdot \nu_E(x)] = 0 \quad \text{for all } \tau \]

Let us define \(T = \text{span}\{\nu_1, \ldots \nu_n\} \) and

\[T^\perp = \{ f \in H^1(\partial E) : \int f = \int f \nu_i = 0 \} \]

Strict stability then means

\[\partial^2 J(E)[f] > 0 \quad \forall f \in T^\perp \setminus \{0\} \]

Let $E \subset \mathbb{T}^n$ be a regular critical set of J such that

$$\partial^2 J(E)[f] > 0 \quad \forall f \in T^\perp(\partial E) \setminus \{0\}.$$

There exists $\delta > 0$ s.t. for all $F \subset \mathbb{T}^n$ with $|F| = |E|$ and $d(E, F) < \delta$

$$J(F) \geq J(E) + C_0 d(E, F)^2.$$

Let $E \subset \mathbb{T}^n$ be a regular critical set of J such that

$$\partial^2 J(E)[f] > 0 \quad \forall f \in T^\perp(\partial E) \setminus \{0\}.$$

There exists $\delta > 0$ s.t. for all $F \subset \mathbb{T}^n$ with $|F| = |E|$ and $d(E, F) < \delta$

$$J(F) \geq J(E) + C_0 d(E, F)^2.$$

- Extension to NBC: Julin-Pisante, 2013
Proposition

If E is a regular critical point of J with $\partial^2 J(E) > 0$, then there exists a family $\{u_\varepsilon\}_{\varepsilon < \varepsilon_0}$ of strict local minimizers of the diffused energy E_ε with $\int_{\mathbb{T}^n} u_\varepsilon \, dx = \int_{\mathbb{T}^n} u_E \, dx$, s.t.

$$u_\varepsilon \to u_E \quad \text{in} \quad L^1(\mathbb{T}^n)$$

as $\varepsilon \to 0$.
Case $\gamma = 0$: the periodic isoperimetric problem

Corollary

Let $E \subset \mathbb{T}^n$ be smooth open set with ∂E a constant mean curvature surface. If

$$\int_{\partial E} \left(|\nabla \partial E f|^2 - |B_{\partial E}|^2 f^2 \right) d\mathcal{H}^{n-1} > 0 \quad \forall \, f \in T^\perp(\partial E) \setminus \{0\},$$

then there exist $\delta, C > 0$ s.t. for $F \subset \mathbb{T}^n$, with $|F| = |E|$ and $d(E, F) < \delta$

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E, F)]^2.$$
Case $\gamma = 0$: the periodic isoperimetric problem

Corollary

Let $E \subset \mathbb{T}^n$ be smooth open set with ∂E a constant mean curvature surface. If

$$\int_{\partial E} (|\nabla \partial_E f|^2 - |B_{\partial E}|^2 f^2) \, d\mathcal{H}^{n-1} > 0 \quad \forall \, f \in T^\perp(\partial E) \setminus \{0\},$$

then there exist $\delta, C > 0$ s.t. for $F \subset \mathbb{T}^n$, with $|F| = |E|$ and $d(E, F) < \delta$

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E, F)]^2.$$

- B. White, 1994: local minimality w.r.t. L^∞ perturbations
Case $\gamma = 0$: the periodic isoperimetric problem

Corollary

Let $E \subset \mathbb{T}^n$ be smooth open set with ∂E a constant mean curvature surface. If

$$\int_{\partial E} (|\nabla_{\partial E} f|^2 - |B_{\partial E}|^2 f^2) \, d\mathcal{H}^{n-1} > 0 \quad \forall \ f \in T^\perp(\partial E) \setminus \{0\},$$

then there exist $\delta, C > 0$ s.t. for $F \subset \mathbb{T}^n$, with $|F| = |E|$ and $d(E, F) < \delta$

$$P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E, F)]^2.$$

- B. White, 1994: local minimality w.r.t. L^∞ perturbations
- Morgan-Ros, 2010: local minimality w.r.t. L^1 perturbations but for $n \leq 7$ and without quantitative estimate
Application: Global minimality of the single lamella

\[\min \{ J(\gamma(E)) = P_Tn(E) + \gamma \int T_n |\nabla v_E|^2 \text{dx}, |E| = d \} \]

For \(0 < d < 1\) set \(L = T_n - 1 \times [0, d]\)
Application: Global minimality of the single lamella

\[(P) \quad \text{Min} \left\{ J_\gamma(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 \, dx, \quad |E| = d \right\} \]
(P) \quad \text{Min} \begin{cases} J_\gamma(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 \, dx, & |E| = d \end{cases}

For \(0 < d < 1\) set

\[L = \mathbb{T}^{n-1} \times [0, d] \]
Global minimality of the single lamella

Theorem (Acerbi-Fusco-M.) Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (P) provided γ is sufficiently small.

Sketch of the proof: Let E_γ be a minimizer of J_γ.

Step 1: As $\gamma \to 0$ we have $E_\gamma \to L$ in L^1.

Step 2: For γ small L is strictly stable for J_γ.

Step 4: For γ small L is an L^1 isolated local minimizer, uniformly in γ. Thus $E_\gamma = L$ for γ small.
Theorem (Acerbi-Fusco-M.)

Assume that \(L \) is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then \(L \) is also the unique global minimizer of \((\mathcal{P}) \), provided \(\gamma \) is sufficiently small.
Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Sketch of the proof: Let E_γ be a minimizer of J_γ.
Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Sketch of the proof: Let E_γ be a minimizer of J_γ.

Step 1: As $\gamma \to 0$ we have $E_\gamma \to L$ in L^1.
Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Sketch of the proof: Let E_γ be a minimizer of J_γ.

Step 1: As $\gamma \to 0$ we have $E_\gamma \to L$ in L^1.

Step 2: For γ small L is strictly stable for J_γ.
Global minimality of the single lamella

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (P), provided γ is sufficiently small.

Sketch of the proof: Let E_γ be a minimizer of J_γ.

Step 1: As $\gamma \to 0$ we have $E_\gamma \to L$ in L^1.

Step 2: For γ small L is strictly stable for J_γ.

Step 4: For γ small L is an L^1 isolated local minimizer, uniformly in γ. Thus $E_\gamma = L$ for γ small.
Global minimality of the single lamella

Let $n = 2$. Theorem + Howards-Hutchings-Morgan, 1999

⇓

If $\frac{1}{\pi} < d < 1 - \frac{1}{\pi}$, L is the unique global minimizer of (\mathcal{P}) in \mathbb{T}^2

provided γ is small (see also Sternberg-Topaloglu, 2011)
Global minimality of the single lamella

Let $n = 2$. Theorem + Howards-Hutchings-Morgan, 1999

\Downarrow

If $\frac{1}{\pi} < d < 1 - \frac{1}{\pi}$, L is the unique global minimizer of (P) in \mathbb{T}^2

provided γ is small (see also Sternberg-Topaloglu, 2011)

Let $n = 3$. Theorem + a result of Hadwiger, 1972

\Downarrow

There exist $\varepsilon_0, \gamma_0 > 0$ s.t. if

$\frac{1}{2} - \varepsilon_0 < d < \frac{1}{2} + \varepsilon_0$, $0 \leq \gamma < \gamma_0$

L is the unique global minimizer of (P) in \mathbb{T}^3
We consider only the case $m = 0$
We consider only the case $m = 0$

$$\Omega_a := (0, a) \times (0, 1)$$
Critical 2d k-lamellar patterns

We consider only the case $m = 0$

$$\Omega_a := (0, a) \times (0, 1)$$

\bullet Criticality $\Rightarrow y_j = \frac{2j-1}{2k}$, $j = 1, \ldots, k$
Theorem (M.-Sternberg, 2013)

For any positive integer k,
Theorem (M.-Sternberg, 2013)

For any positive integer k, if

$$a < \pi \sqrt{\frac{k}{2\gamma}},$$

then the k-lamellar critical point u_k is an isolated L^1-local minimizer in $\Omega := (0, a) \times (0, 1)$; i.e., there exist δ and $C > 0$ such that

$$J(w) \geq J(u_k) + C \|u_k - w\|_{L^1(\Omega)}$$

provided $\|u_k - w\|_{L^1(\Omega)} < \delta$ and $\int_{\Omega} w = \int_{\Omega} u_k$.

Local minimality of 2d lamellar patterns
Theorem (M.-Sternberg, 2013)

For any positive integer \(k \), if

\[a < \pi \sqrt{\frac{k}{2 \gamma}}, \]

then the \(k \)-lamellar critical point \(u_k \) is an isolated \(L^1 \)-local minimizer in \(\Omega_a := (0, a) \times (0, 1) \);
Local minimality of 2d lamellar patterns

Theorem (M.-Sternberg, 2013)

For any positive integer k, if

$$a < \pi \sqrt{\frac{k}{2\gamma}},$$

then the k-lamellar critical point u_k is an isolated L^1-local minimizer in $\Omega_a := (0, a) \times (0, 1)$; i.e., there exist δ and $C > 0$ such that

$$J(w) \geq J(u_k) + C \| u_k - w \|_{L^1(\Omega_a)}^2$$

provided $\| u_k - w \|_{L^1(\Omega_a)} < \delta$ and $\int_{\Omega_a} w = \int_{\Omega_a} u_k$.
Local minimality of 2d lamellar patterns: ingredients

- Spectral analysis: $\sqrt{k^2} < \pi$ implies that $\partial^2 J(u_k)[f] > 0$ for all $f \in H^1_0(\Gamma)$ with $\int_\Gamma f \, dH_1 = 0$.

- Extension of the Acerbi-Fusco-M. $\partial^2 J > 0 \Rightarrow L^1$-local minimality result to the case of rectangular domain with NBC.

- Remark: Morphological instability may only come from wriggling and corrugations.
Local minimality of 2d lamellar patterns: ingredients

- **Spectral analysis:** \(a < \pi \sqrt{\frac{k}{2\gamma}} \) implies that
 \[
 \partial^2 J(u_k)[f] > 0 \quad \text{for all } f \in H^1(\Gamma) \setminus 0 \text{ with } \int_{\Gamma} f \, d\mathcal{H}^1 = 0.
 \]
• Spectral analysis: $a < \pi \sqrt{\frac{k}{2\gamma}}$ implies that

$$\partial^2 J(u_k)[f] > 0 \quad \text{for all } f \in H^1(\Gamma) \setminus 0 \text{ with } \int_{\Gamma} f \, d\mathcal{H}^1 = 0.$$

• Extension of the Acerbi-Fusco-M.

$$\partial^2 J > 0 \Rightarrow L^1\text{-local minimality}$$

result to the case of rectangular domain with NBC.
Local minimality of 2d lamellar patterns: ingredients

- **Spectral analysis**: \(a < \pi \sqrt{\frac{k}{2\gamma}} \) implies that
 \[\partial^2 J(u_k)[f] > 0 \quad \text{for all } f \in H^1(\Gamma) \setminus \{0\} \text{ with } \int_\Gamma f \, d\mathcal{H}^1 = 0. \]

- **Extension of the Acerbi-Fusco-M.**
 \[\partial^2 J > 0 \Rightarrow L^1\text{-local minimality} \]

result to the case of **rectangular domain with NBC**

- **Remark**: **Morphological instability** may only come from **wriggling and corrugations**:

\[\text{corrugation} \quad \text{wriggling} \]
Theorem (M.-Sternberg, 2013)

Fix any $\gamma > 0$. Then for $k(\gamma)$ minimizing the 1d energy

$$J^{1d}(u_k) = k + \frac{\gamma}{12k^2},$$

$u_{k(\gamma)}$ is the unique global minimizer of J in $(0, \varepsilon) \times (0, 1)$ for ε sufficiently small.
Step 1: Γ-convergence

Consider (NLIP) posed on a thin rectangle $\Omega_\varepsilon := (0, \varepsilon) \times (0, 1)$:

$$\min J_{\Omega_\varepsilon} (u) := \text{Per}_{\Omega_\varepsilon} (\{ x : u(x) = 1 \}) + \gamma \int_{\Omega_\varepsilon} |\nabla v|^2 \, dx,$$

under the constraint $\int_{\Omega_\varepsilon} u = 0$.

After rescaling onto the (fixed) unit square Ω_1 and dividing by ε, one checks that J_{Ω_ε} Γ-converges as $\varepsilon \to 0$ to the one-dimensional energy

$$J_{1d} (u) := \# \text{ of jumps} + \gamma \int_0^1 v^2 \, dy,$$

for $u \in BV((0,1), \{ \pm 1 \})$, with $\int_0^1 u(y) \, dy = 0$, and where $v = v(y)$ solves

$$-v'' = u \quad \text{for } 0 < y < 1, \quad v'(0) = 0 = v'(1).$$
Step 1: Γ-convergence

Consider (NLIP) posed on a thin rectangle $\Omega_\varepsilon := (0, \varepsilon) \times (0, 1)$:

$$\min J_{\Omega_\varepsilon}(u) := \text{Per}_{\Omega_\varepsilon}(\{x : u(x) = 1\}) + \gamma \int_{\Omega_\varepsilon} |\nabla v|^2 \, dx,$$

under the constraint $\int_{\Omega_\varepsilon} u = 0$.

After rescaling onto the (fixed) unit square Ω_1 and dividing by ε one checks that J_{Ω_ε} Γ-converges as $\varepsilon \to 0$ to the one-dimensional energy

$$J^{1d}(u) := \# \text{ of jumps} + \gamma \int_0^1 v_y^2 \, dy$$

for $u \in BV((0, 1); \{\pm 1\})$, with $\int_0^1 u(y) \, dy = 0$, and where $v = v(y)$ solves

$$-v'' = u \quad \text{for } 0 < y < 1, \quad v'(0) = 0 = v'(1).$$
"Perimeter" in 1d just counts number of jumps, located say at \(\{y_j\}_{j=1}^k \). Also criticality condition \(\kappa + 4\gamma v = \text{constant} \) reduces to simply

\[
v(y_j) = \text{constant} \quad (\text{since curvature} = 0)
\]

Easily check that only critical points are \(u_k \) given by

\[
u_k(y) := \begin{cases}
1 & \text{for } 0 < y < y_1, \ y_2 < y < y_3, \ldots, \ y_{k-1} < y < y_k \\
-1 & \text{for } y_1 < y < y_2, \ y_3 < y < y_4, \ldots, \ y_k < y < 1
\end{cases}
\]

where \(y_j := \frac{2j-1}{2k} \) for \(j = 1, 2, \ldots, k \) and the derivative of the corresponding \(v_k \) is a "sawtooth function."

(For simplicity only, fix \(m = 0 \).)
Step 2: Explicit calculation of 1d minimizers

“Perimeter” in 1d just counts number of jumps, located say at \(\{y_j\}_{j=1}^k \).

Also criticality condition \(\kappa + 4\gamma v = \text{constant} \) reduces to simply

\[
v(y_j) = \text{constant} \quad \text{(since curvature = 0)}
\]

Easily check that only critical points are \(u_k \) given by

\[
u_k(y) := \begin{cases}
1 & \text{for } 0 < y < y_1, \ y_2 < y < y_3, \ldots, \ y_{k-1} < y < y_k \\
-1 & \text{for } y_1 < y < y_2, \ y_3 < y < y_4, \ldots, \ y_k < y < 1
\end{cases}
\]

where \(y_j := \frac{2j-1}{2k} \) for \(j = 1, 2, \ldots, k \) and the derivative of the corresponding \(v_k \) is a “sawtooth function.”

(For simplicity only, fix \(m = 0 \).)
Step 2: Explicit calculation of 1d minimizers

The 5-jump critical point u_5 with $m = 0$ and the derivative of the corresponding v_5 solving

$$-v^{''}_5 = u_5 \quad \text{for } 0 < y < 1, \quad v'_5(0) = 0 = v'_5(1).$$
Easy to compute that

\[J_{1d}^{1d}(u_k) = k + \frac{\gamma}{12k^2} \]

so given any \(\gamma \), one can optimize over \(k \) to find global minimizer is \(u_k(\gamma) \), with

\[k(\gamma) \sim \gamma^{1/3} \text{ for } \gamma \gg 1. \]
Step 2: Explicit calculation of 1d minimizers

Easy to compute that

\[J^{1d}(u_k) = k + \frac{\gamma}{12k^2} \]

so given any \(\gamma \), one can optimize over \(k \) to find global minimizer is \(u_k(\gamma) \), with

\[k(\gamma) \sim \gamma^{1/3} \text{ for } \gamma \gg 1. \]
Fix $a < \pi \sqrt{\frac{k(\gamma)}{2\gamma}}$. Let u_ε be a global minimizer in Ω_ε and let

$$\tilde{u}_\varepsilon(x, y) := u_\varepsilon\left(\varepsilon \frac{x}{a}, y\right)$$
Step 3: Proof of global minimality

Fix \(a < \pi \sqrt{\frac{k(\gamma)}{2\gamma}} \). Let \(u_\varepsilon \) be a global minimizer in \(\Omega_\varepsilon \) and let

\[
\tilde{u}_\varepsilon(x, y) := u_\varepsilon\left(\frac{\varepsilon}{a} x, y\right)
\]

By \(\Gamma \)-convergence

\[
\tilde{u}_\varepsilon \rightarrow u_{k(\gamma)} \quad \text{in } L^1(\Omega_a)
\]
Fix $a < \pi \sqrt{\frac{k(\gamma)}{2\gamma}}$. Let u_ε be a global minimizer in Ω_ε and let

$$\tilde{u}_\varepsilon(x, y) := u_\varepsilon\left(\frac{a}{\varepsilon}x, y\right)$$

By Γ-convergence

$$\tilde{u}_\varepsilon \rightharpoonup u_{k(\gamma)} \text{ in } L^1(\Omega_a)$$

Let u_ε^r the function in $BV(\Omega_a)$ obtained by $\frac{a}{\varepsilon} - 1$ reflections of u_ε.

$$u_\varepsilon^{(1)} = u_\varepsilon$$

$$u_\varepsilon^{(k)}(x, y) := u^{(k-1)}(x, 2(k-1)\varepsilon - y)$$
Step 3: Proof of global minimality: conclusion

Note

\[\| u_{\varepsilon}^r - u_k(\gamma) \|_{L^1(\Omega_a)} = \| \tilde{u}_{\varepsilon} - u_k(\gamma) \|_{L^1(\Omega_a)} \to 0 \]
Step 3: Proof of global minimality: conclusion

Note

\[\| u_{\epsilon}^r - u_k(\gamma) \|_{L^1(\Omega_a)} = \| \tilde{u}_{\epsilon} - u_k(\gamma) \|_{L^1(\Omega_a)} \rightarrow 0 \]

Thus for \(\epsilon \) small enough

\[J_{\Omega_a}(u_{\epsilon}^r) \geq J_{\Omega_a}(u_k(\gamma)) + C \| u_k(\gamma) - u_{\epsilon}^r \|_{L^1(\Omega_a)}^2 \]
Step 3: Proof of global minimality: conclusion

Note

\[\| u^r_{\varepsilon} - u_k(\gamma) \|_{L^1(\Omega_a)} = \| \tilde{u}_{\varepsilon} - u_k(\gamma) \|_{L^1(\Omega_a)} \rightarrow 0 \]

Thus for \(\varepsilon \) small enough

\[J_{\Omega_a}(u^r_{\varepsilon}) \geq J_{\Omega_a}(u_k(\gamma)) + C \| u_k(\gamma) - u^r_{\varepsilon} \|_{L^1(\Omega_a)}^2 \]

But \(J_{\Omega_a}(u^r_{\varepsilon}) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{\varepsilon}) \),
Step 3: Proof of global minimality: conclusion

Note

\[\| u_\varepsilon^r - u_k(\gamma) \|_{L^1(\Omega_a)} = \| \tilde{u}_\varepsilon - u_k(\gamma) \|_{L^1(\Omega_a)} \to 0 \]

Thus for \(\varepsilon \) small enough

\[J_{\Omega_a}(u_\varepsilon^r) \geq J_{\Omega_a}(u_k(\gamma)) + C \| u_k(\gamma) - u_\varepsilon^r \|_{L^1(\Omega_a)}^2 \]

But \(J_{\Omega_a}(u_\varepsilon^r) = \frac{a}{\varepsilon} J_{\Omega}(u_\varepsilon), \ J_{\Omega_a}(u_k(\gamma)) = \frac{a}{\varepsilon} J_{\Omega}(u_k(\gamma)) \),
Note

\[\| u_\varepsilon^r - u_{k(\gamma)} \|_{L^1(\Omega_a)} = \| \tilde{u}_\varepsilon - u_{k(\gamma)} \|_{L^1(\Omega_a)} \to 0 \]

Thus for \(\varepsilon \) small enough

\[J_{\Omega_a}(u_\varepsilon^r) \geq J_{\Omega_a}(u_{k(\gamma)}) + C \| u_{k(\gamma)} - u_\varepsilon^r \|_{L^1(\Omega_a)}^2 \]

But \(J_{\Omega_a}(u_\varepsilon^r) = \frac{a}{\varepsilon} J_{\Omega_\varepsilon}(u_\varepsilon), \quad J_{\Omega_a}(u_{k(\gamma)}) = \frac{a}{\varepsilon} J_{\Omega_\varepsilon}(u_{k(\gamma)}) \), and

\[\| u_{k(\gamma)} - u_\varepsilon^r \|_{L^1(\Omega_a)}^2 = \frac{a^2}{\varepsilon^2} \| u_{k(\gamma)} - u_\varepsilon \|_{L^1(\Omega_\varepsilon)}^2 \]
Step 3: Proof of global minimality: conclusion

Note
\[\| u_\varepsilon^r - u_k(\gamma) \|_{L^1(\Omega_a)} = \| \tilde{u}_\varepsilon - u_k(\gamma) \|_{L^1(\Omega_a)} \to 0 \]

Thus for \(\varepsilon \) small enough

\[J_{\Omega_a}(u_\varepsilon^r) \geq J_{\Omega_a}(u_k(\gamma)) + C \| u_k(\gamma) - u_\varepsilon^r \|_{L^1(\Omega_a)}^2 \]

But \(J_{\Omega_a}(u_\varepsilon^r) = \frac{a}{\varepsilon} J_{\Omega_\varepsilon}(u_\varepsilon), J_{\Omega_a}(u_k(\gamma)) = \frac{a}{\varepsilon} J_{\Omega_\varepsilon}(u_k(\gamma)), \) and

\[\| u_k(\gamma) - u_\varepsilon^r \|_{L^1(\Omega_a)}^2 = \frac{a^2}{\varepsilon^2} \| u_k(\gamma) - u_\varepsilon \|_{L^1(\Omega_\varepsilon)}^2 \]

Thus, for \(\varepsilon \) small enough

\[J_{\Omega_\varepsilon}(u_\varepsilon) \geq J_{\Omega_\varepsilon}(u_k(\gamma)) + C \frac{a}{\varepsilon} \| u_k(\gamma) - u_\varepsilon \|_{L^1(\Omega_\varepsilon)}^2 \]
Note

$$\| u^r_{\varepsilon} - u_k(\gamma) \|_{L^1(\Omega_a)} = \| \tilde{u}_{\varepsilon} - u_k(\gamma) \|_{L^1(\Omega_a)} \to 0$$

Thus for ε small enough

$$J_{\Omega_a}(u^r_{\varepsilon}) \geq J_{\Omega_a}(u_k(\gamma)) + C \| u_k(\gamma) - u^r_{\varepsilon} \|^2_{L^1(\Omega_a)}$$

But $J_{\Omega_a}(u^r_{\varepsilon}) = \frac{a}{\varepsilon} J_{\Omega_\varepsilon}(u_{\varepsilon})$, $J_{\Omega_a}(u_k(\gamma)) = \frac{a}{\varepsilon} J_{\Omega_\varepsilon}(u_k(\gamma))$, and

$$\| u_k(\gamma) - u^r_{\varepsilon} \|^2_{L^1(\Omega_a)} = \frac{a^2}{\varepsilon^2} \| u_k(\gamma) - u_{\varepsilon} \|^2_{L^1(\Omega_\varepsilon)}$$

Thus, for ε small enough

$$J_{\Omega_\varepsilon}(u_{\varepsilon}) \geq J_{\Omega_\varepsilon}(u_k(\gamma)) + C \frac{a}{\varepsilon} \| u_k(\gamma) - u_{\varepsilon} \|^2_{L^1(\Omega_\varepsilon)}$$

$$\downarrow$$

$$u_{\varepsilon} = u_k(\gamma) \quad \text{for } \varepsilon \text{ small}$$
Thanks for your attention!!!!!!