Phase field approximation of cohesive fracture models

Flaviana Iurlano¹

joint work with

Sergio Conti² and Matteo Focardi³

¹ IAM and HCM - Universität Bonn, Germany

² IAM - Universität Bonn, Germany

3 DiMaI "U. Dini" - Università degli Studi di Firenze, Italy

Trends in Non-linear Analysis 2014

August 1, 2014 - Lisboa, Portugal

Introduction

Typical variational antiplane shear models in Fracture Mechanics take the form

$$\int_{\Omega} h(|\nabla u|) dx + \int_{J_u} g(|[u]|) d\mathcal{H}^{n-1} + \kappa |D^c u|(\Omega),$$

for a scalar displacement $u \in BV(\Omega)$. Here

- strain energy $\rightsquigarrow h$ is quadratic near the origin;
- surface energy $\rightsquigarrow g$ is nondecreasing;
- micro-cracking $\rightsquigarrow \kappa \in [0, +\infty]$ is the slope of g at 0 and of h at $+\infty$.

Examples:

- Griffith fracture $\rightsquigarrow h(s) = s^2$, g is constant, and $\kappa = +\infty$;
- Barenblatt cohesive fracture $\rightsquigarrow \kappa \in (0, +\infty)$, h is linear at $+\infty$, g is concave, growing from g(0) = 0 to $g(+\infty) < +\infty$, and is linear at 0;
- Dugdale cohesive fracture \rightsquigarrow as before with $g(s) = s \land 1$;

Regularization *via* Γ-convergence

A large literature was devoted to the derivation of brittle fracture models

$$\int_{\Omega} |\nabla u|^2 dx + \mathcal{H}^{n-1}(J_u), \qquad u \in SBV(\Omega)$$

from more regular models, like damage or phase field models, mainly within the framework of Γ -convergence:

- antiplane shear → [Ambrosio-Tortorelli '90, '92];
- vector-valued case → [Focardi '01];
- linearized elasticity → [Chambolle '04, '05], [I. '13];
- numerical simulations → [Bellettini–Coscia '94],
 [Bourdin–Francfort–Marigo '00], [Burke–Ortner–Süli '10]...;
- ...

A smaller amount of literature looks towards cohesive fracture:

• [Ambrosio–Lemenant–Royer-Carfagni '13], [Dal Maso–I. '13], [I. '13], [Focardi–I. '14] for the functional

$$\int_{\Omega} |\nabla u|^2 dx + \int_{J_u} |[u]| d\mathcal{H}^{n-1} + \mathcal{H}^{n-1}(J_u), \qquad u \in SBV(\Omega);$$

 [Alicandro–Braides–Shah '99], [Alicandro–Focardi '02] for the functional

$$\int_{\Omega} |\nabla u| dx + \int_{J_u} g(|[u]|) d\mathcal{H}^{n-1} + \kappa |D^c u|(\Omega), \qquad u \in BV(\Omega);$$

• [I. '13] for the functional

$$\int_{\Omega} h(|\nabla u|) dx + \int_{J_u} |[u]| d\mathcal{H}^{n-1} + |D^c u|(\Omega), \qquad u \in BV(\Omega).$$

Goal: to approximate via Γ -convergence the cohesive energy functional à la Barenblatt.

The regularized functionals

We study a damage model as proposed by [Pham-Marigo '10], namely,

$$F_{\varepsilon}(u,v) := \int_{\Omega} \left(f_{\varepsilon}^{2}(v) |\nabla u|^{2} + \frac{(1-v)^{2}}{4\varepsilon} + \varepsilon |\nabla v|^{2} \right) dx,$$

with $u, v \in H^1(\Omega)$, $0 \le v \le 1$ \mathcal{L}^n -a.e. in Ω , and $F_{\varepsilon}(u, v) := +\infty$ otherwise. The potential $f_{\varepsilon} : [0, 1) \to [0, +\infty]$ is defined by

$$f_{\varepsilon}(s) := 1 \wedge \varepsilon^{1/2} f(s),$$

where $f \in C^0([0,1),[0,+\infty))$ is nondecreasing, $f^{-1}(0) = \{0\}$, and it satisfies $\lim_{s\to 1} (1-s)f(s) = \ell$, $\ell \in (0,+\infty)$.

Prototypical case: $f(s) = \frac{s}{1-s}$.

Theorem

Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz set. Then, the functionals F_{ε} Γ -converge in $L^1(\Omega) \times L^1(\Omega)$ to the functional F defined by

$$F(u,v) := \begin{cases} \int_{\Omega} h(|\nabla u|) dx + \int_{J_u} g(|[u]|) d\mathcal{H}^{n-1} + \ell |D^c u|(\Omega) & \text{if } v = 1 \ \mathcal{L}^n\text{-a.e.,} \\ u \in GBV(\Omega), \\ +\infty & \text{otherwise.} \end{cases}$$

Here the volume energy density h is set as $h(s) := s^2$ if $s \le \ell/2$ and as $h(s) := \ell s - \ell^2/4$ otherwise, while the surface energy density g is given by

$$g(s) := \inf \left\{ \int_0^1 |1 - \beta| \sqrt{f^2(\beta) |\alpha'|^2 + |\beta'|^2} \, dt : (\alpha, \beta) \in H^1((0, 1)), \right.$$
$$\alpha(0) = 0, \ \alpha(1) = s, \ \beta(0) = \beta(1) = 1 \right\}.$$

Convergence of minima

Let $0 < \eta_{\varepsilon}$, ε be such that $\eta_{\varepsilon} = o(\varepsilon)$ and let $\zeta \in L^{q}(\Omega)$, with q > 1. Let $G_{\varepsilon} \colon L^{1}(\Omega) \times L^{1}(\Omega) \to [0, +\infty]$ be defined by

$$G_{\varepsilon}(u,v) := \int_{\Omega} \left(\left(f_{\varepsilon}^{2}(v) + \eta_{\varepsilon} \right) |\nabla u|^{2} + \frac{(1-v)^{2}}{4\varepsilon} + \varepsilon |\nabla v|^{2} + |u-\zeta|^{q} \right) dx$$

if $(u, v) \in H^1(\Omega) \times H^1(\Omega)$ and $0 \le v \le 1$ \mathcal{L}^n -a.e. in Ω , and $+\infty$ otherwise. Let now $\mathfrak{G}: L^1(\Omega) \to [0, +\infty]$ be defined by

$$\mathfrak{G}(u) := \int_{\Omega} h(|\nabla u|) dx + \int_{J_u} g(|[u]|) d\mathcal{H}^{n-1} + \ell |D^c u|(\Omega) + \int_{\Omega} |u - \zeta|^q dx$$

if $u \in GBV(\Omega)$ and $+\infty$ otherwise.

Corollary

Let $(u_{\varepsilon}, v_{\varepsilon}) \in H^1(\Omega) \times H^1(\Omega)$ be a minimizer of G_{ε} . Then $v_{\varepsilon} \to 1$ in $L^1(\Omega)$, a subsequence of u_{ε} converges in $L^q(\Omega)$ to a minimizer u of \mathfrak{G} , and the minimum values of G_{ε} tend to the minimum value of \mathfrak{G} .

Remarks

Recalling that

$$F_{\varepsilon}(u,v) := \int_{\Omega} \left(f_{\varepsilon}^{2}(v) |\nabla u|^{2} + \frac{(1-v)^{2}}{4\varepsilon} + \varepsilon |\nabla v|^{2} \right) dx,$$

if $u, v \in H^1(\Omega)$ and $0 \le v \le 1$ \mathcal{L}^n -a.e. in Ω , where $f_{\varepsilon}(s) := 1 \wedge \varepsilon^{1/2} f(s)$, we observe that

• the truncation of f can be performed with any continuous nondecreasing function ψ satisfying $\inf \psi > 0$ and $\psi(1) = 1$, therefore f_{ε} can be made increasing.

Remarks

Recalling that

$$F_{\varepsilon}(u,v) := \int_{\Omega} \left(f_{\varepsilon}^{2}(v) |\nabla u|^{2} + \frac{(1-v)^{2}}{4\varepsilon} + \varepsilon |\nabla v|^{2} \right) dx,$$

if $u, v \in H^1(\Omega)$ and $0 \le v \le 1$ \mathcal{L}^n -a.e. in Ω , where $f_{\varepsilon}(s) := 1 \wedge \varepsilon^{1/2} f(s)$, we observe that

- the truncation of f can be performed with any continuous nondecreasing function ψ satisfying $\inf \psi > 0$ and $\psi(1) = 1$, therefore f_{ε} can be made increasing.
- In the Ambrosio–Tortorelli functional we have $f_{\varepsilon}^2(v) = v^2$, so there are essentially two regimes: $v \sim 0$ and $v \sim 1$. Moreover you can separate the contributions. In our case it can be $v \sim 1$ and $f_{\varepsilon}(v) = \varepsilon^{1/2} f(v)$.

By
$$\lim_{s\to 1}(1-s)f(s)=\ell$$
, $\ell\in(0,+\infty)$, $f^{-1}(0)=0$, and

$$g(s) := \inf \left\{ \int_0^1 |1 - \beta| \sqrt{f^2(\beta) |\alpha'|^2 + |\beta'|^2} \, dt : (\alpha, \beta) \in H^1((0, 1)), \right.$$
$$\alpha(0) = 0, \ \alpha(1) = s, \ \beta(0) = \beta(1) = 1 \right\}$$

we observe that

• g is nondecreasing, subadditive, Lipschitz, linear at 0, satisfies g(0) = 0, and tends to 1 as $s \to +\infty$. In particular when $s \sim 0$ the optimal (α, β) is near to (st, 1); when $s \sim +\infty$, it is near to the Ambrosio-Tortorelli optimal curve.

By
$$\lim_{s\to 1}(1-s)f(s)=\ell$$
, $\ell\in(0,+\infty)$, $f^{-1}(0)=0$, and

$$g(s) := \inf \left\{ \int_0^1 |1 - \beta| \sqrt{f^2(\beta) |\alpha'|^2 + |\beta'|^2} \, dt : (\alpha, \beta) \in H^1((0, 1)), \right.$$
$$\alpha(0) = 0, \ \alpha(1) = s, \ \beta(0) = \beta(1) = 1 \right\}$$

we observe that

- the set of all possible g's is large:
 - if $\ell_i = \ell$ for all $i, f^{(j)} > f^{(j+1)}$, and $f^{(j)}(s) \perp 0$ for all $s \in [0, 1)$, then $g_i \geq g_{i+1}$ and $g_i(s) \downarrow 0$ for all $s \in [0, +\infty)$;
 - if $\ell_i = \ell$ for all $i, f^{(j)} \leq f^{(j+1)}$, and $f^{(j)}(s) \uparrow +\infty$ for all $s \in (0,1)$, then $g_i \leq g_{i+1}$ and $g_i(s) \uparrow 1 \land \ell s$ for all $s \in [0, +\infty)$.

Further results: recovering Griffith's brittle fracture

We consider a sequence of nondecreasing continuous functions $(f^{(j)})$ with $f^{(j)-1}(0) = \{0\}$, and $\lim_{s \to 1} (1-s) f^{(j)}(s) = \ell_j$, $\ell_j \in (0, +\infty)$. For all $j, k \in \mathbb{N}$

$$F_k^{(j)}(u,v) := \int_{\Omega} \left((f_k^{(j)})^2(v) |\nabla u|^2 + \frac{(1-v)^2}{4\varepsilon_k} + \varepsilon_k |\nabla v|^2 \right) dx$$

if $(u, v) \in H^1(\Omega) \times H^1(\Omega)$ and $0 \le v \le 1$ \mathcal{L}^n -a.e. in Ω , and $+\infty$ otherwise, where $f_k^{(j)}(s) := 1 \wedge \varepsilon_k^{1/2} f^{(j)}(s)$.

Theorem

Suppose that $(f^{(j)})$ satisfies $f^{(j)} \leq f^{(j+1)}$, $\ell_j \uparrow +\infty$ and $f^{(j)}(s) \uparrow \infty$ pointwise in (0,1). Then, the functionals $F_k^{(k)}$ Γ -converge in $L^1(\Omega) \times L^1(\Omega)$ to

$$\widetilde{MS}(u,v) := \int_{\Omega} |\nabla u|^2 dx + \mathcal{H}^{n-1}(J_u)$$

if $u \in GSBV(\Omega)$, v = 1 \mathcal{L}^n -a.e. in Ω , and $+\infty$ otherwise.

Further results: Dugdale's cohesive model

We consider $f^{(j)}(s) := (a_j s) \vee f(s)$, with f as before and (a_j) nondecreasing, $a_j \uparrow +\infty$, such that $a_j \, \varepsilon_j^{1/2} \downarrow 0$. Let $f_k^{(j)}(s) := 1 \wedge \varepsilon_k^{1/2} f^{(j)}(s)$ and let

$$F_k^{(j)}(u,v) := \int_{\Omega} \left((f_k^{(j)})^2(v) |\nabla u|^2 + \frac{(1-v)^2}{4\varepsilon_k} + \varepsilon_k |\nabla v|^2 \right) dx$$

if $(u, v) \in H^1(\Omega) \times H^1(\Omega)$ and $0 \le v \le 1$ \mathcal{L}^n -a.e. in Ω , and $+\infty$ otherwise.

Theorem

The functionals $F_k^{(k)}$ Γ -converge in $L^1(\Omega) \times L^1(\Omega)$ to

$$\widetilde{\mathcal{D}}(u,v) := \int_{\Omega} h(|\nabla u|) dx + \int_{I_n} \left(1 \wedge \ell|[u]|\right) d\mathcal{H}^{n-1} + \ell|D^c u|(\Omega)$$

if v = 1 \mathcal{L}^n -a.e. in Ω , and $+\infty$ otherwise. Here $h(s) := s^2$ if $s \le \ell/2$ and as $h(s) := \ell s - \ell^2/4$ otherwise.

Further results: a model with power-law growth

Let p > 1 and consider a nondecreasing continuous function ψ_p satisfying $\psi_p^{-1}(0) = 0$ and

$$\lim_{s\to 1} (1-s)^p \psi_p(s) = \kappa, \qquad \kappa \in (0,+\infty),$$

the prototype being $\psi_p(s) := s/(1-s)^p$. Let

$$f^{(j)}(s) := \frac{j s}{1 - s} \wedge \psi_p(s),$$

let $f_k^{(j)}(s) := 1 \wedge \varepsilon_k^{1/2} f^{(j)}(s)$, and let

$$F_k^{(j)}(u,v) := \int_{\Omega} \left((f_k^{(j)})^2(v) |\nabla u|^2 + \frac{(1-v)^2}{4\varepsilon_k} + \varepsilon_k |\nabla v|^2 \right) dx$$

if $(u, v) \in H^1(\Omega) \times H^1(\Omega)$ and $0 \le v \le 1$ \mathcal{L}^n -a.e. in Ω , and $+\infty$ otherwise.

Theorem

The functionals $F_k^{(k)}$ Γ -converge in $L^1(\Omega) \times L^1(\Omega)$ to $\widetilde{\Phi}_p$, where

$$\widetilde{\Phi}_p(u,v) := \int_{\Omega} |\nabla u|^2 dx + \int_{J_u} \vartheta_p(|[u]|) d\mathcal{H}^{n-1}$$

if $u \in GSBV(\Omega)$ and v = 1 \mathcal{L}^n -a.e. in Ω , $+\infty$ otherwise. Here

$$\vartheta_p(s) := \inf \left\{ \int_0^1 |1 - \beta| \sqrt{\psi_p^2(\beta) |\alpha'|^2 + |\beta'|^2} \, dt : (\alpha, \beta) \in H^1((0, 1)), \right.$$
$$\alpha(0) = 0, \ \alpha(1) = s, \ \beta(0) = \beta(1) = 1 \right\}.$$

Note that ϑ_p is nondecreasing, subadditive, $\frac{2}{p+1}$ -Hölder, satisfies $\vartheta_p(0) = 0$, grows as $s^{\frac{2}{p+1}}$ near 0, and tends to 1 as $s \to +\infty$.

References

- [1] R. Alicandro, A. Braides, and J. Shah, *Free-discontinuity problems via functionals involving the L*¹-norm of the gradient and their approximations, Interfaces Free Bound., 1 (1999), pp. 17–37.
- [2] R. Alicandro and M. Focardi, *Variational approximation of free-discontinuity energies with linear growth*, Commun. Contemp. Math., 4 (2002), pp. 685–723.
- [3] L. Ambrosio, A. Lemenant, and G. Royer-Carfagni, *A variational model for plastic slip and its regularization via* Γ*-convergence*, J. Elasticity, 110 (2013), pp. 201–235.
- [4] S. Conti, M. Focardi, F. Iurlano, *Phase field approximation of cohesive fracture models*, preprint.
- [5] G. Dal Maso, F. Iurlano, Fracture models as Γ-limits of damage models, Commun. Pure Appl. Anal. 12 (2013), 1657–1686.
- [6] M. Focardi, F. Iurlano, *Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity*, to appear on SIAM J. Math. Anal.
- [7] F. Iurlano, Fracture and plastic models as Γ-limits of damage models under different regimes, Adv. Calc. Var. 6 (2013), 165–189.

...thanks for your attention!