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Crystalline Solids

» Many everyday solids are crystalline

» Simplest structures are Bravais lattices = affine transformations of Z"

Q Q

Body-Centred Cubic (BCC) Face-Centred Cubic (FCC)



Basic Crystal Plasticity

Crystal Plasticity = ‘slip’ of crystallographic planes.

Volterra (1905), Orowan (1934), Polanyi (1934), Taylor (1934):

Energy required ~ Area Energy required ~ Length



The Microscopic Mechanism: Dislocations

» Geometric lattice defects
» Assign them a Burgers vector, b, and line direction, .

» Simplest types are screw (with b || I) and edge (with b L I).
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Literature Review

» Semi-discrete models:
» Cermelli-Leoni (2005), Ponsiglione (2007), Scardia-Zeppieri (2012),
Garroni et al (2010), De Luca et al (2012)
» Monneau et al (2006,2008,20009,. .. ), Blass-Morandotti (2014)
» [-limits of phase field models:
» Koslowski et al (2002), Garroni et al (2005, 2006, 2011),
» Discrete (atomistic) models:
» Ariza-Ortiz (2005): description of discrete crystal elasticity and
dislocations, algebraic topology framework
» Ponsiglione (2007): energy asymptotics of screw dislocations under
anti-plane deformation
» Alicandro-Garroni-De Luca-Ponsiglione (2013): asymptotics for energy

and gradient flow dynamics of dislocations under anti-plane deformation
» Related work: Alicandro et al (2009, 2011)

Work on dislocation statics is primarily concerned with energy asymptotics.

THIS TALK: existence of equilibrium configurations and their properties



Our Focus: Screw Dislocations

» Topological line defects

» Loosely, a ‘spiral staircase’ or ‘vortex’ in the lattice

» Burgers vector parallel to dislocation line

http://www.iap.tuwien.ac.at/www/surface/stm_gallery/dislocations



Setup: Anti-plane displacements

1. BCC Lattice, £ := BZ3 . 3
3. General deformation: Y : L — R

4. Anti-plane deformation:
Y(x) = x + y(Mx — x°)z,
where y:A—=R
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2. Projectalong v: A= I'I£ x0 &
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Setup: Elastic and Plastic Strain

Assumption: nearest-neighbour pair interac-
tion between columns.

B:={b=(£{) e AxA[g—n|=1}

Total strain: Dy, :=y({)—y(() !

Shortest distance between atoms in 2 columns:

z
=: /1 + |ap|? 13
Energy stored in a bond (between columns):

(Dys) = > 6(\/1+ Dys+ ) = ()

neZ
Elastic strain: «p € [-1/2,1/2] Plastic strain: z, = Dy, —ap € Z

True
distance

In general, these are NOT finite differences.



Setup: Energy Difference Functional

Energy difference functional:

E(v:9) =Y (¥(Dys) = 4:(Db))

beB
] ¥(r) = esitt(nr)
» Compares energy of anti-plane \/\/\/
deformations $(r) = ¢1(r) = Irdistr, 2)?

» |Invariant under natural symmetries,
e.g. translation, rotation and vertical
shifts S o5 o o5 i

Definition: y is a globally stable equilibrium if E(y + u;y) > 0 for all
u: N — R with compact support.

y is a locally stable equilibrium if there exists € such that E(y+u;y) > 0
for all [|Dul|pg) < e.

AIM: Find globally and locally stable equilibrium
configurations containing dislocations.




Definition of a Dislocation

‘Lattice point’
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Use Algebraic Topology approach of Ariza-Ortiz (2005).
Cells: € := {conv{1, &,&} | (&1, &), (&2, €3), (&3, &1) € B}

(= set of all triangles)

Can give an additive structure, and define boundary operators
0:C — B — A in a natural way.



Definition of a Dislocation

We can also define a notion of ‘integration”.

» If C=(&,¢,m) €C, then

a=« + + .
/ac (€3} (n,$) (&m) ¢ A
» Recall that Dy = a + z, ."'\ beB
0 = D - / o + Z7 .": C S C“"‘.
oc y ac oC n O). ..... O §
~—— —— -
e-33 €z S =ac

and so [, a € {0,+1}.
» Think of [« as the Burgers vector.

Definition: C € C is a dislocation core for y if [;-a # 0.
Positive cores: Ct[y] := {C € C|+vely oriented, [y-a =1}
Negative cores: C~[y] := {C € C|+vely oriented, [y-a = —1}



Existence of a single dislocation

Theorem [TH, C Ortner]
Assume 1) > 1" (0)1)y1,, then there exists a globally stable equilibrium y
containing at least one dislocation.

Proof:

1.

Define y(x) := % arg(x) = 5 arctan(x2/x1) [Remark: Dy ¢ (2]

(branch cut along x)
= Jr & =1 for all closed curves I encircling the origin

CE(u) = E@ +u9), #2 ={u: N R|Duc ?},

= e C(W?)

Prove that £ has a minimizer in #'12.

. Let u be a minimiser; y =y + u;

Duet?> = «o=A&+ Du+ z, where z is compactly supported
= fJra=[fa=1



Existence of a single dislocation: Step 3 of Proof

> J(x) := 5 arg(£) = 5 arctan(x2/x1) (branch cut along x7)

» #12 .= {u:N—R|Duc(?}
» E(u) = EW +u;)) = Ee C(W?)

Theorem [TH, C Ortner]
Let ©» > 9" (0)t1in, then there exists a global minimizer of £ in #12.

Strategy: Direct Method

ADMISSIBLE

Problem: Because &£ respects lattice sym-
metries, it is not coercive

E(u)=E( +uy) M

= > ((D3 + Dus) — v(D3)) S

beB Y 0 05




Failures of compactness: Issues with dipoles

Failure of compactness 1: Dislocation ‘Motion’
Cores translate to infinity along a minimising sequence.

Recentre coordinates

| K3

Resolution: Use translation invariance to recentre coordinates so
dislocation core remains at the origin.



Failures of compactness: Issues with dipoles

Failure of compactness 2: Dislocation Multiplication
#C* — 00 ~» MAIN DIFFICULTY; need to bound number of cores
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Resolution: A concentration compactness principle: Lions (1985)
» Redefine minimising sequence with same energy but better properties
» Use structure to bound #C¥ for this sequence



Stability of general dislocation configurations

Stability Assumption (STAB): There exists y = y+u,u € #2, 5E(u) =0,
and  (62E(u)v,v) > ||Dv||3  for all v € w12

Remark: Can prove (STAB) directly for 1) = ¢y;,. ‘Expected’ for globally stable
configuration. In general, test numerically, see Ehrlacher-Ortner-Shapeev (2013).

Theorem [TH, C Ortner]
Suppose (STAB) holds, € is a convex lattice polygon or A, and A C C is a
finite set such that C*[a] C A.

For any N € N there exist constants Lo(N) and So(N,index(9)) such that
whenever (C;,s;) € C? x {—1,+1}, i=1,..., N with

» dist(G;, Gj) > Lo(N), i #j, and

» dist(C;, 92) > So(N, index(9R)),
Then 3 a locally stable configuration y’ with C*[a/] C U,{Vzl(xcf + A) and
fa(xci+A) o =s;.



Stability of general dislocation configurations

Proof of Theorem:

Inverse Function Theorem = 3 local minimiser - -
closetoz=>;y(-— C)+yi+u(-— C;), where ".".

yi is chosen to solve

—Ay; =0in Q, ?9}?," = _%f/(' — Gi) on 0.

Careful estimates on y; and decay of u

Ehrlacher-Ortner-Shapeev (2013) are needed to
estimate 0€%(z).

Remarks:
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» So depends only on the longest period in the boundary, not diam(€2).

» y(- — C;) + y; = linear elasticity solution, u(- — C;) = core corrector.

» If Q=A, dist(C;,09) := 400, y; = 0.

» Techniques could give energy asymptotics in terms of dist(C;, C;) and
dist(C;, 0L2), see also Alicandro-De Luca-Garroni-Ponsiglione (2013).



Conclusion

Summary:

» Anti-plane lattice model with natural symmetries: existence of globally
stable configurations in infinite domain with unit Burgers vector

» Under stronger assumptions: locally stable configurations with arbitrary
dislocation arrangement and in domains with polygonal boundaries

Outlook:

» Revival of study of dislocations in recent years: focus on connecting
scales: molecular mechanics / meso-scale models ~~ semi-discrete
point or line models ~» dislocation density and plasticity models

» Our focus is on atomistic and atomistic to line/point models
~> Next step: Stochastic atomistic dynamics — Continuum dynamics
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