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Crystalline Solids

I Many everyday solids are crystalline
I Simplest structures are Bravais lattices = affine transformations of Zn

Body-Centred Cubic (BCC) Face-Centred Cubic (FCC)



Basic Crystal Plasticity

Crystal Plasticity = ‘slip’ of crystallographic planes.

Volterra (1905), Orowan (1934), Polanyi (1934), Taylor (1934):

Energy required ∼ Area Energy required ∼ Length



The Microscopic Mechanism: Dislocations
I Geometric lattice defects
I Assign them a Burgers vector, b, and line direction, l.
I Simplest types are screw (with b ‖ l) and edge (with b ⊥ l).



Literature Review

I Semi-discrete models:
I Cermelli-Leoni (2005), Ponsiglione (2007), Scardia-Zeppieri (2012),

Garroni et al (2010), De Luca et al (2012)
I Monneau et al (2006,2008,2009,. . . ), Blass-Morandotti (2014)

I Γ-limits of phase field models:
I Koslowski et al (2002), Garroni et al (2005, 2006, 2011),

I Discrete (atomistic) models:
I Ariza-Ortiz (2005): description of discrete crystal elasticity and

dislocations, algebraic topology framework
I Ponsiglione (2007): energy asymptotics of screw dislocations under

anti-plane deformation
I Alicandro-Garroni-De Luca-Ponsiglione (2013): asymptotics for energy

and gradient flow dynamics of dislocations under anti-plane deformation
I Related work: Alicandro et al (2009, 2011)

Work on dislocation statics is primarily concerned with energy asymptotics.

THIS TALK: existence of equilibrium configurations and their properties



Our Focus: Screw Dislocations

I Topological line defects
I Loosely, a ‘spiral staircase’ or ‘vortex’ in the lattice
I Burgers vector parallel to dislocation line

http://www.iap.tuwien.ac.at/www/surface/stm_gallery/dislocations



Setup: Anti-plane displacements
1. BCC Lattice, L := BZ3

2. Project along ν: Λ=ΠL−x0

3. General deformation: Y : L → R3

4. Anti-plane deformation:
Y (x) = x + y(Πx − x0)ν,

where y : Λ→ R



Setup: Elastic and Plastic Strain
Assumption: nearest-neighbour pair interac-
tion between columns.

B :=
{
b = (ξ, ζ) ∈ Λ× Λ

∣∣ |ξ − η| = 1
}

Total strain: Dyb := y(ξ)− y(ζ)

Shortest distance between atoms in 2 columns:

min
z∈Z

√
1 + |Dyb − z |2 =

√
1 + min

z
|Dyb − z |2

=:
√
1 + |αb|2

Energy stored in a bond (between columns):

ψ
(
Dyb

)
:=
∑
n∈Z

φ
(√

1 + |Dyb + n|2
)

= ψ
(
αb
)

Elastic strain: αb ∈ [−1/2, 1/2] Plastic strain: zb = Dyb − αb ∈ Z

In general, these are NOT finite differences.



Setup: Energy Difference Functional
Energy difference functional:

E (y ; ŷ) :=
∑
b∈B

(
ψ(Dyb)− ψ(Dŷb)

)
I Compares energy of anti-plane

deformations
I Invariant under natural symmetries,

e.g. translation, rotation and vertical
shifts −1 −0.5 0 0.5 1

ψ(r ) = ψ l i n(r ) = 1
2λdist(r, Z) 2

ψ(r ) = c s in2(π r)

Definition: y is a globally stable equilibrium if E (y + u; y) ≥ 0 for all
u : Λ→ R with compact support.
y is a locally stable equilibrium if there exists ε such that E (y +u; y) ≥ 0
for all ‖Du‖`2(B) ≤ ε.

AIM: Find globally and locally stable equilibrium
configurations containing dislocations.



Definition of a Dislocation

Use Algebraic Topology approach of Ariza-Ortiz (2005).

Cells: C :=
{
conv{ξ1, ξ2, ξ3}

∣∣ (ξ1, ξ2), (ξ2, ξ3), (ξ3, ξ1) ∈ B
}

(= set of all triangles)

Can give an additive structure, and define boundary operators
∂ : C → B → Λ in a natural way.



Definition of a Dislocation

We can also define a notion of ‘integration’.
I If C = (ξ, ζ, η) ∈ C, then∫

∂C
α = α(ζ,ξ) + α(η,ζ) + α(ξ,η).

I Recall that Dy = α + z ,

0 =
∫
∂C

Dy =
∫
∂C
α︸ ︷︷ ︸

∈[− 3
2 ,

3
2 ]

+
∫
∂C

z ,︸ ︷︷ ︸
∈Z

and so
∫
∂C α ∈ {0,±1}.

I Think of
∫
∂C α as the Burgers vector.

Definition: C ∈ C is a dislocation core for y if
∫
∂C α 6= 0.

Positive cores: C+[y ] := {C ∈ C |+vely oriented,
∫
∂C α = 1}

Negative cores: C−[y ] := {C ∈ C |+vely oriented,
∫
∂C α = −1}



Existence of a single dislocation

Theorem [TH, C Ortner]
Assume ψ ≥ ψ′′(0)ψlin, then there exists a globally stable equilibrium y
containing at least one dislocation.

Proof:
1. Define ŷ(x) := 1

2π arg(x) = 1
2π arctan(x2/x1) [Remark: Dŷ 6∈ `2]

(branch cut along x1)
⇒

∫
Γ α̂ = 1 for all closed curves Γ encircling the origin

2. E(u) := E (ŷ + u; ŷ), Ẇ 1,2 := {u : Λ→ R |Du ∈ `2},
⇒ E ∈ C(Ẇ 1,2)

3. Prove that E has a minimizer in Ẇ 1,2.
4. Let u be a minimiser; y = ŷ + u;

Du ∈ `2 ⇒ α = α̂ + Du + z , where z is compactly supported
⇒

∫
Γ α =

∫
Γ α̂ = 1



Existence of a single dislocation: Step 3 of Proof

I ŷ(x) := 1
2π arg(ξ) = 1

2π arctan(x2/x1) (branch cut along x1)
I Ẇ 1,2 := {u : Λ→ R |Du ∈ `2}
I E(u) := E (ŷ + u; ŷ) ⇒ E ∈ C(Ẇ 1,2)

Theorem [TH, C Ortner]
Let ψ ≥ ψ′′(0)ψlin, then there exists a global minimizer of E in Ẇ 1,2.

Strategy: Direct Method

Problem: Because E respects lattice sym-
metries, it is not coercive

E(u) = E (ŷ + u; ŷ)

=
∑
b∈B

(
ψ(Dŷb + Dub)− ψ(Dŷb)

)
−1 −0.5 0 0.5 1

ADMISSIBLE

NOT ADMISSIBLE



Failures of compactness: Issues with dipoles

Failure of compactness 1: Dislocation ‘Motion’
Cores translate to infinity along a minimising sequence.

Resolution: Use translation invariance to recentre coordinates so
dislocation core remains at the origin.



Failures of compactness: Issues with dipoles
Failure of compactness 2: Dislocation Multiplication

#C± →∞  MAIN DIFFICULTY; need to bound number of cores

Resolution: A concentration compactness principle: Lions (1985)
I Redefine minimising sequence with same energy but better properties
I Use structure to bound #C± for this sequence



Stability of general dislocation configurations

Stability Assumption (STAB): There exists y = ŷ +u, u ∈ Ẇ 1,2, δE(u) = 0,
and 〈δ2E(u)v , v〉 ≥ c0‖Dv‖2

2 for all v ∈ Ẇ 1,2.

Remark: Can prove (STAB) directly for ψ = ψlin. ‘Expected’ for globally stable
configuration. In general, test numerically, see Ehrlacher-Ortner-Shapeev (2013).

Theorem [TH, C Ortner]
Suppose (STAB) holds, Ω is a convex lattice polygon or Λ, and A ⊂ C is a
finite set such that C±[α] ⊂ A.
For any N ∈ N there exist constants L0(N) and S0

(
N, index(∂Ω)

)
such that

whenever (Ci , si ) ∈ CΩ × {−1,+1}, i = 1, . . . ,N with
I dist(Ci ,Cj) ≥ L0(N), i 6= j , and
I dist(Ci , ∂Ω) ≥ S0

(
N, index(∂Ω)

)
,

Then ∃ a locally stable configuration y ′ with C±[α′] ⊂
⋃N

i=1(xCi + A) and∫
∂(xCi +A) α

′ = si .



Stability of general dislocation configurations
Proof of Theorem:
Inverse Function Theorem ⇒ ∃ local minimiser
close to z =

∑
i ŷ(·−Ci )+ ȳi +u(·−Ci ), where

ȳi is chosen to solve

−∆ȳi = 0 in Ω, ∂ȳi
∂ν = − ∂

∂ν ŷ(· − Ci ) on ∂Ω.

Careful estimates on ȳi and decay of u
Ehrlacher-Ortner-Shapeev (2013) are needed to
estimate δEΩ(z).

Remarks:
I S0 depends only on the longest period in the boundary, not diam(Ω).
I ŷ(· − Ci ) + ȳi = linear elasticity solution, u(· − Ci ) = core corrector.
I If Ω = Λ, dist(Ci , ∂Ω) := +∞, ȳi ≡ 0.
I Techniques could give energy asymptotics in terms of dist(Ci ,Cj) and

dist(Ci , ∂Ω), see also Alicandro-De Luca-Garroni-Ponsiglione (2013).



Conclusion
Summary:
I Anti-plane lattice model with natural symmetries: existence of globally

stable configurations in infinite domain with unit Burgers vector
I Under stronger assumptions: locally stable configurations with arbitrary

dislocation arrangement and in domains with polygonal boundaries

Outlook:
I Revival of study of dislocations in recent years: focus on connecting

scales: molecular mechanics / meso-scale models  semi-discrete
point or line models  dislocation density and plasticity models

I Our focus is on atomistic and atomistic to line/point models
 Next step: Stochastic atomistic dynamics → Continuum dynamics
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