Stability of screw dislocations in an anti-plane lattice model

Tom Hudson (Oxford) Christoph Ortner (Warwick)

Instituto Superior Técnico, Lisboa

Trends in Non-Linear Analysis 31 July 2014

Crystalline Solids

- Many everyday solids are crystalline
- lacktriangle Simplest structures are Bravais lattices = affine transformations of \mathbb{Z}^n

Body-Centred Cubic (BCC)

Face-Centred Cubic (FCC)

Basic Crystal Plasticity

Crystal Plasticity = 'slip' of crystallographic planes.

Volterra (1905), Orowan (1934), Polanyi (1934), Taylor (1934):

Energy required \sim Area

Energy required \sim **Length**

The Microscopic Mechanism: Dislocations

- ► Geometric lattice defects
- ► Assign them a Burgers vector, **b**, and line direction, **l**.
- ▶ Simplest types are screw (with $\mathbf{b} \parallel \mathbf{l}$) and edge (with $\mathbf{b} \perp \mathbf{l}$).

Literature Review

- ► Semi-discrete models:
 - ► Cermelli-Leoni (2005), Ponsiglione (2007), Scardia-Zeppieri (2012), Garroni et al (2010), De Luca et al (2012)
 - ► Monneau et al (2006,2008,2009,...), Blass-Morandotti (2014)
- ► Γ-limits of phase field models:
 - ► Koslowski et al (2002), Garroni et al (2005, 2006, 2011),
- ► Discrete (atomistic) models:
 - ► Ariza-Ortiz (2005): description of discrete crystal elasticity and dislocations, algebraic topology framework
 - ► Ponsiglione (2007): energy asymptotics of screw dislocations under anti-plane deformation
 - ► Alicandro-Garroni-De Luca-Ponsiglione (2013): asymptotics for energy and gradient flow dynamics of dislocations under anti-plane deformation
 - ▶ Related work: Alicandro et al (2009, 2011)

Work on dislocation statics is primarily concerned with energy asymptotics.

THIS TALK: existence of equilibrium configurations and their properties

Our Focus: Screw Dislocations

- ▶ Topological line defects
- ► Loosely, a 'spiral staircase' or 'vortex' in the lattice
- ► Burgers vector parallel to dislocation line

http://www.iap.tuwien.ac.at/www/surface/stm_gallery/dislocations

Setup: Anti-plane displacements

1. BCC Lattice, $\mathcal{L}:=\mathsf{B}\mathbb{Z}^3$

2. Project along ν : $\Lambda = \Pi \mathcal{L} - x^0$

- 3. General deformation: $Y:\mathcal{L} \to \mathbb{R}^3$
- 4. Anti-plane deformation:

$$Y(x) = x + y(\Pi x - x^{0})\nu,$$
where $y : \Lambda \to \mathbb{R}$

$$y(\xi)$$

Setup: Elastic and Plastic Strain

Assumption: nearest-neighbour pair interaction between columns.

$$\mathcal{B} := \{b = (\xi, \zeta) \in \Lambda \times \Lambda \, | \, |\xi - \eta| = 1\}$$

Total strain: $Dy_b := y(\xi) - y(\zeta)$

Shortest distance between atoms in 2 columns:

$$\min_{z \in \mathbb{Z}} \sqrt{1 + |Dy_b - z|^2} = \sqrt{1 + \min_{z} |Dy_b - z|^2}$$
$$=: \sqrt{1 + |\alpha_b|^2}$$

Energy stored in a bond (between columns):

$$\psi(Dy_b) := \sum_{\mathbf{p} \in \mathbb{Z}} \phi\left(\sqrt{1 + |Dy_b + \mathbf{n}|^2}\right) = \psi(\alpha_b)$$

 Dy_b

distance

Elastic strain: $\alpha_b \in [-1/2, 1/2]$ **Plastic strain:** $z_b = Dy_b - \alpha_b \in \mathbb{Z}$

In general, these are **NOT** finite differences.

Setup: Energy Difference Functional

Energy difference functional:

$$E(y; \hat{y}) := \sum_{b \in \mathcal{B}} \left(\psi(Dy_b) - \psi(D\hat{y}_b) \right)$$

- Compares energy of anti-plane deformations
- Invariant under natural symmetries, e.g. translation, rotation and vertical shifts

Definition: y is a globally stable equilibrium if $E(y+u;y) \ge 0$ for all $u: \Lambda \to \mathbb{R}$ with compact support. y is a locally stable equilibrium if there exists ϵ such that $E(y+u;y) \ge 0$ for all $\|Du\|_{\ell^2(\mathcal{B})} \le \epsilon$.

AIM: Find globally and locally stable equilibrium configurations containing dislocations.

Definition of a Dislocation

Use Algebraic Topology approach of Ariza-Ortiz (2005).

Cells:
$$C := \{ \text{conv}\{\xi_1, \xi_2, \xi_3\} \mid (\xi_1, \xi_2), (\xi_2, \xi_3), (\xi_3, \xi_1) \in \mathcal{B} \}$$

(= set of all triangles)

Can give an additive structure, and define boundary operators $\partial:\mathcal{C}\to\mathcal{B}\to\Lambda$ in a natural way.

Definition of a Dislocation

We can also define a notion of 'integration'.

▶ If $C = (\xi, \zeta, \eta) \in \mathcal{C}$, then

$$\int_{\partial C} \alpha = \alpha_{(\zeta,\xi)} + \alpha_{(\eta,\zeta)} + \alpha_{(\xi,\eta)}.$$

► Recall that $Dy = \alpha + z$,

$$0 = \int_{\partial C} Dy = \underbrace{\int_{\partial C} \alpha}_{\in [-\frac{3}{2}, \frac{3}{2}]} + \underbrace{\int_{\partial C} z}_{\in \mathbb{Z}},$$

and so $\int_{\partial C} \alpha \in \{0, \pm 1\}$.

▶ Think of $\int_{\partial C} \alpha$ as the **Burgers vector**.

Definition: $C \in \mathcal{C}$ is a dislocation core for y if $\int_{\partial C} \alpha \neq 0$. Positive cores: $C^+[y] := \{C \in \mathcal{C} \mid \text{+vely oriented}, \int_{\partial C} \alpha = 1\}$ Negative cores: $C^-[y] := \{C \in \mathcal{C} \mid \text{+vely oriented}, \int_{\partial C} \alpha = -1\}$

Existence of a single dislocation

Theorem

[TH, C Ortner]

Assume $\psi \geq \psi''(0)\psi_{\text{lin}}$, then there exists a globally stable equilibrium y containing at least one dislocation.

Proof:

- 1. Define $\hat{y}(x) := \frac{1}{2\pi} \arg(x) = \frac{1}{2\pi} \arctan(x_2/x_1)$ [Remark: $D\hat{y} \notin \ell^2$] (branch cut along x_1) $\Rightarrow \int_{\Gamma} \hat{\alpha} = 1$ for all closed curves Γ encircling the origin
- 2. $\mathcal{E}(u) := E(\hat{y} + u; \hat{y}), \ \dot{\mathcal{W}}^{1,2} := \{u : \Lambda \to \mathbb{R} \mid Du \in \ell^2\},\ \Rightarrow \mathcal{E} \in C(\dot{\mathcal{W}}^{1,2})$
- 3. Prove that \mathcal{E} has a minimizer in $\dot{\mathcal{W}}^{1,2}$.
- 4. Let u be a minimiser; $y = \hat{y} + u$; $Du \in \ell^2 \implies \alpha = \hat{\alpha} + Du + z$, where z is compactly supported $\Rightarrow \int_{\Gamma} \alpha = \int_{\Gamma} \hat{\alpha} = 1$

Existence of a single dislocation: Step 3 of Proof

• $\hat{y}(x) := \frac{1}{2\pi} \arg(\xi) = \frac{1}{2\pi} \arctan(x_2/x_1)$

(branch cut along x_1)

- $\blacktriangleright \ \mathring{\mathcal{W}}^{1,2} := \{ u : \Lambda \to \mathbb{R} \mid Du \in \ell^2 \}$
- $\blacktriangleright \ \mathcal{E}(u) := E(\hat{y} + u; \hat{y}) \qquad \Rightarrow \qquad \mathcal{E} \in C(\mathring{\mathcal{W}}^{1,2})$

Theorem

[TH, C Ortner]

Let $\psi \geq \psi''(0)\psi_{\text{lin}}$, then there exists a global minimizer of \mathcal{E} in $\dot{\mathcal{W}}^{1,2}$.

Strategy: Direct Method

Problem: Because \mathcal{E} respects lattice symmetries, it is not coercive

$$\mathcal{E}(u) = E(\hat{y} + u; \hat{y})$$

$$= \sum_{b \in \mathcal{B}} \left(\psi(D\hat{y}_b + Du_b) - \psi(D\hat{y}_b) \right)$$

Failures of compactness: Issues with dipoles

Failure of compactness 1: Dislocation 'Motion'

Cores translate to infinity along a minimising sequence.

Resolution: Use translation invariance to recentre coordinates so dislocation core remains at the origin.

Failures of compactness: Issues with dipoles

Failure of compactness 2: Dislocation Multiplication

 $\#\mathcal{C}^{\pm} \to \infty \leadsto \text{MAIN DIFFICULTY};$ need to bound number of cores

Resolution: A concentration compactness principle: Lions (1985)

- ▶ Redefine minimising sequence with same energy but better properties
- ▶ Use structure to bound $\#\mathcal{C}^{\pm}$ for this sequence

Stability of general dislocation configurations

Stability Assumption (STAB): There exists $y = \hat{y} + u, u \in \mathring{\mathcal{W}}^{1,2}$, $\delta \mathcal{E}(u) = 0$, and $\langle \delta^2 \mathcal{E}(u) v, v \rangle \geq c_0 \|Dv\|_2^2$ for all $v \in \mathring{\mathcal{W}}^{1,2}$.

Remark: Can prove **(STAB)** directly for $\psi=\psi_{\rm lin}$. 'Expected' for globally stable configuration. In general, test numerically, see Ehrlacher-Ortner-Shapeev (2013).

Theorem

[TH, C Ortner]

Suppose **(STAB)** holds, Ω is a convex lattice polygon or Λ , and $A \subset \mathcal{C}$ is a finite set such that $\mathcal{C}^{\pm}[\alpha] \subset A$.

For any $N \in \mathbb{N}$ there exist constants $L_0(N)$ and $S_0(N, \operatorname{index}(\partial\Omega))$ such that whenever $(C_i, s_i) \in \mathcal{C}^\Omega \times \{-1, +1\}$, $i = 1, \ldots, N$ with

- ▶ $\operatorname{dist}(C_i, C_j) \ge L_0(N)$, $i \ne j$, and
- ▶ $\operatorname{dist}(C_i, \partial\Omega) \geq S_0(N, \operatorname{index}(\partial\Omega)),$

Then \exists a locally stable configuration y' with $C^{\pm}[\alpha'] \subset \bigcup_{i=1}^{N} (x^{C_i} + A)$ and $\int_{\partial(x^{C_i} + A)} \alpha' = s_i$.

Stability of general dislocation configurations

Proof of Theorem:

Inverse Function Theorem $\Rightarrow \exists$ local minimiser close to $z = \sum_i \hat{y}(\cdot - C_i) + \bar{y}_i + u(\cdot - C_i)$, where \bar{y}_i is chosen to solve

$$-\Delta \bar{y}_i = 0 \text{ in } \Omega, \quad \tfrac{\partial \bar{y}_i}{\partial \nu} = - \tfrac{\partial}{\partial \nu} \hat{y}(\cdot - C_i) \text{ on } \partial \Omega.$$

Careful estimates on \bar{y}_i and decay of u Ehrlacher-Ortner-Shapeev (2013) are needed to estimate $\delta \mathcal{E}^{\Omega}(z)$.

Remarks:

- S_0 depends only on the longest period in the boundary, not diam (Ω) .
- $\hat{y}(\cdot C_i) + \bar{y}_i$ = linear elasticity solution, $u(\cdot C_i)$ = core corrector.
- ▶ If $\Omega = \Lambda$, $\operatorname{dist}(C_i, \partial \Omega) := +\infty$, $\bar{y}_i \equiv 0$.
- ▶ Techniques could give energy asymptotics in terms of dist(C_i , C_j) and dist(C_i , $\partial\Omega$), see also Alicandro-De Luca-Garroni-Ponsiglione (2013).

Conclusion

Summary:

- ► Anti-plane lattice model with natural symmetries: existence of globally stable configurations in infinite domain with unit Burgers vector
- ▶ Under stronger assumptions: locally stable configurations with arbitrary dislocation arrangement and in domains with polygonal boundaries

Outlook:

- ► Revival of study of dislocations in recent years: focus on connecting scales: molecular mechanics / meso-scale models → semi-discrete point or line models → dislocation density and plasticity models
- ▶ Our focus is on atomistic and atomistic to line/point models
 → Next step: Stochastic atomistic dynamics → Continuum dynamics

References:

TH and C Ortner, Existence and stability of a screw dislocation under anti-plane deformation, *Arch. Ration. Mech. Anal.* 213(3):887–929 2014 TH and C Ortner, Analysis of stable screw dislocation configurations in an anti-plane lattice model, arXiv:1403.0518