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Epitaxy: Outline

• Quantum Dots: wetting and zero contact angle. Shapes of
islands

• surface diffusion in epitaxially strained solids

• material voids
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Quantum Dots. The Context

With N. Fusco, G. Leoni, M. Morini

Strained epitaxial films on a relatively thick substrate; the thin film
wets the substrate.
Islands develop without forming dislocations – Stranski-Krastanow
growth

plane linear elasticity (In-GaAs/GaAs or SiGe/Si)

free surface of film is flat until reaching a critical thikness

lattice misfits between substrate and film induce strains in the
film

Complete relaxation to bulk equilibrium ⇒ crystalline
structure would be discontinuous at the interface

Strain ⇒ flat layer of film morphologically unstable or
metastable after a critical value of the thickness is reached
(competition between surface and bulk energies)
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Islands

To release some of the elastic energy due to the strain: atoms on
the free surface rearrange and morphologies such as formation of
island (quatum dots) of pyramidal shapes are energetically more
economical

the profile

Kinetics of Stranski-Krastanow depend on initial thickness
of film, competition between strain and surface energies,
anisotropy, ETC.
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Quantum Dots: ”semiconductors whose characteristics are closely
related to size and shape of crystals”

transistors, solar cells, optical and optoelectric devices (quantum
dot laser), medical imaging, information storage, nanotechnology
. . .

electronic properties depend on the regularity of the dots, size,
spacing, etc.
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Sharp Interface Model

0

Γh

Ωh

b

h : R→ [0,∞) b-periodic, Lipschitz

Ωh =
{

(x , y) : 0<x<b, 0<y<h(x)
}

Γh = ∂Ωh ∩
{

y > 0
}

Γh = free profile of the film

Ωh = reference configuration of the film, |Ωh| = d , d given

u : Ωh 7→ R2 = displacement of the film

u(x , 0) = (e0x , 0), u(b, y) = u(0, y) + (e0b, 0)

e0 > 0 measures the mismatch between the two lattices

Brian Spencer, Bonnetier and Chambolle, Chambolle and Larsen; Caflish, W. E, Otto, Voorhees, et. al.

epitaxial thin films: Gao and Nix, Spencer and Meiron, Spencer and Tersoff, Chambolle, Braides, Bonnetier, Solci,

F., Fusco, Leoni, Morini

anisotropic surface energies: Herring, Taylor, Ambrosio, Novaga, and Paolini, Fonseca and Müller, Morgan
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mismatch strain (at which minimum energy is attained)

E0 (y) =

{
e0i⊗ i if y ≥ 0,
0 if y < 0,

e0 > 0
i the unit vector along the x direction

elastic energy per unit area: W (E− E0 (y))

W (E) :=
1

2
E · C [E] , E(u) :=

1

2
(∇u + (∇u)T )

C . . . positive definite fourth-order tensor
film and substrate have similar material properties, share the same

homogeneous elasticity tensor C
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ϕ0 (y) :=

{
γfilm if y > 0,
γsub if y = 0.

Total energy of the system:

F (u,Ωh) :=

∫
Ωh

W (E (u) (x)− E0 (y)) dx +

∫
Γh

ϕ0 (y) dH1 (x) ,

Γh := ∂Ωh ∩ ((0, b)× R) . . . free surface of the film
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Hard to Implement . . .

Sharp interface model is difficult to be implemented numerically.
Instead: boundary-layer model; discontinuous transition is
regularized over a thin transition region of width δ (“smearing
parameter”).

Eδ (y) :=
1

2
e0

(
1 + f

(y

δ

))
i⊗ i, y ∈ R,

ϕδ (y) := γsub + (γfilm − γsub) f
(y

δ

)
, y ≥ 0,

f (0) = 0, lim
y→−∞

f (y) = −1, lim
y→∞

f (y) = 1.
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Regularized total energy of the system

Fδ (u,Ωh) :=

∫
Ωh

W (E (u) (x)− Eδ (y)) dx +

∫
Γh

ϕδ (y) dH1 (x)

Two regimes :

{
γfilm ≥ γsub

γfilm < γsub
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Wetting, etc.

asymptotics as δ → 0+

γfilm < γsub

relaxed surface energy density is no longer discontinuous: it is
constantly equal to γfilm. . . WETTING!

more favorable to cover the substrate with an infinitesimal
layer of film atoms (and pay surface energy with density γfilm)
rather than to leave any part of the substrate exposed (and
pay surface energy with density γsub)

wetting regime: regularity of local minimizers (u,Ω) of the
limiting functional F∞ under a volume constraint.
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cusps and vertical cuts

The profile h of the film for a locally minimizing configuration is
regular except for at most a finite number of cusps and vertical cuts
which correspond to vertical cracks in the film.

[Spencer and Meiron]: steady state solutions exhibit cusp
singularities, time-dependent evolution of small disturbances of the
flat interface result in the formation of deep grooved cusps (also
[Chiu and Gao]); experimental validation of sharp cusplike features
in SI0.6 Ge0.4

zero contact-angle condition between the wetting layer and islands

vertical
slope

cusp

contact angle =zero
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conclude that the graph of h is a Lipschitz continuous curve
away from a finite number of singular points (cusps, vertical
cuts).

. . . and more: Lipschitz continuity of h +blow up
argument+classical results on corner domains for solutions of
Lamé systems of h ⇒ decay estimate for the gradient of the
displacement u near the boundary ⇒ C 1,α regularity of h and
∇u; bootstrap.

this takes us to linearly isotropic materials

Irene Fonseca Variational Methods for Crystal Surface Instability



conclude that the graph of h is a Lipschitz continuous curve
away from a finite number of singular points (cusps, vertical
cuts).

. . . and more: Lipschitz continuity of h +blow up
argument+classical results on corner domains for solutions of
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Linearly Isotropic Elastic Materials

W (E) =
1

2
λ [tr (E)]2 + µ tr

(
E2
)

λ and µ are the (constant) Lamé moduli

µ > 0 , µ+ λ > 0 .

Euler-Lagrange system of equations associated to W

µ∆u + (λ+ µ)∇ (div u) = 0 in Ω.
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Regularity of Γ: No Corners

Γsing := Γcusps ∪ {(x , h(x)) : h(x) < h−(x)}

Already know that Γsing is finite.

Theorem

(u,Ω) ∈ X . . . δ-local minimizer for the functional F∞.
Then Γ \ Γsing is of class C 1,σ for all 0 < σ < 1

2 .

As an immediate corollary, get the zero contact-angle condition

Corollary

(u,Ω) ∈ X . . . local minimizer for the functional F∞.
If z0 = (x0, 0) ∈ Γ \ Γsing then h′(x0) = 0.
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Shapes of Islands

With A. Pratelli and B. Zwicknagl

We proved that the shape of the island evolves with the size (and
size varies with misfit! . . . later . . . ):

small islands always have the half-pyramid shape, and as the
volume increases the island evolves through a sequence of shapes
that include more facets with increasing steepness – half pyramid,
pyramid, half dome, dome, half barn, barn

This validates what was experimentally and numerically obtained
in the physics and materials science literature
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Another incompatibility: miscut

Focus on small volume case. Small slope approximation ([Tersoff &

Tromp, 1992; Spencer & Tersoff, 2010]):

E (u) ∼
∫ W

0

∫ W

0
log |x − y |u′(x)u′(y) dydx + length(Graph(u))−W ,

height profile u, supp(h) = [0,W ]
fully facetted model:

u′ ∈ A := {tan(−θm + nθ) : n ∈ N ⊂ Z}

θm describes miscut. If θm 6= 0, wetting not admissible

Figure: Sketch of a faceted height profile function u with support [0,W ]. The profile is Lipschitz and the
derivative lies almost everywhere in a discrete set. The miscut angle is denoted by θm 6= 0, i.e., the preferred
orientation of the film is not parallel to the substrate surface.
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Compactness: bounds on the support of u

Set F(d) := inf{E (u) :
∫

u = d}

Theorem

For every d, r > 0 there exists W such that if
E (u) ≤ F(d) + r , then W ≤W .

If d → 0 and r → 0, then W → 0.
→ no wetting effect for small volumes; wetting– optimal
profiles tend to be extremely large and flat when the mass is
small.

Theorem

Every minimizer satisfies the quantized zero contact angle
property

There is a volume d > 0 such that the half pyramid is the
unique minimizer for every d ∈ (0, d).
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This approximation becomes progressively less accurate for
increasing slope, so our results should be taken as semiquan-
titative for domes and only qualitative for barns. This is ad-
equate for the general and qualitative issues addressed here.
The other term Esurface is the extra surface energy due to the
presence of the island,

Esurface = !
i=1

N

!iLi − !mW , "3#

where Li is the length of the ith facet, !i is its surface energy,
!m is the surface energy of the vicinal surface with miscut
"m, and W is the island width. The first term accounts for the
additional island surface, and the second term represents the
substrate surface eliminated by the island. We assume
Stranski–Krastonov growth, so !m is actually the energy of
the vicinal wetting layer, and interfacial energy does not
enter.10

For concreteness, we consider the case of identical facet
energies !i=!0, with equally spaced orientations "n=n"1 "in-
teger n#. By analogy with $105% facets on "001#, we choose
"1=11.3°. Facets at higher angles 2"1 and 3"1 can be con-
sidered roughly analogous to the $113% and $111% facets de-
fining “dome” and “barn” shapes.

The average surface energy of a vicinal surface with
miscut "m "assuming noninteracting steps# is

!m = !0 cos""m# + # sin""m# , "4#

where # is the step formation energy per unit height. A lower
bound on # is the value for a facet of neighboring orientation
"1 "here 11.3°#. "For smaller values of #, the facet at "1
would be unstable against decomposing into steps.# We use
this value, giving

# = &!0 − !0 cos""1#'csc""1# . "5#

Using a significantly larger value does not qualitatively
change any of the results reported here.

For a given island volume V, we consider all possible
island types "i.e., all allowed facet sequences# and find the
one with lowest energy. For a given type "a given set of N
facets#, any stable or metastable island shape satisfies

!E/!$i

!V/!$i
= % for i = 1, . . . ,N . "6#

Here % is the island’s chemical potential, or equivalently, a
Lagrange multiplier used to fix its volume; and $i is the
position of the ith facet with respect to translation of the
facet normal to itself. Island shapes satisfying Eq. "6# are
shown in Fig. 1, and their energies in Fig. 2.

Sufficiently small islands always have the half-pyramid
shape, because of the dominant influence of surface energy.
As the volume increases, we find that the island evolves
through a sequence of shapes that include more facets with
increasing steepness. Figure 1 shows the sequence of equi-
librium island shapes at a 3° miscut, from half-pyramid to
pyramid, half-dome, dome, etc. We find that pyramids are
always truncated in equilibrium, as expected;7 the degree of
truncation depends on the facet angles and energies.

Note that in every case, the outermost facets of the is-
land correspond to the smallest possible slope relative to the
vicinal substrate. For Ge on Si "001#, this would correspond
to "105# on the “downhill” side, and "001# on the “uphill”
side. In between, the island passes sequentially through ev-
ery intermediate facet orientation,11 up to some maximum
positive slope, and then down to some maximally negative
slope. These extremal slopes define the island type.

The energy versus volume for this same 3° miscut is
shown in Fig. 2. For clarity, we show only solutions of Eq.
"6# that are energy minima, i.e., stable and metastable shapes.

half pyramid

pyramid

half dome

dome

half barn

barn

FIG. 1. "Color online# Shape transition sequence at 3° miscut. "Vertical
scale is expanded by a factor of 1.8 for clarity.# Shapes are shown for
increasing volume from bottom to top. We show the largest stable island of
each type, except in the case of barns where we show the smallest. Within
each type, the shape varies only modestly over the entire range of volume
where that type is stable; and the half-pyramid shape is independent of size.
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−0.03

−0.02

−0.01

en
er

gy
E

/E
0

volume V / V
0
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B

FIG. 2. "Color online# Energy vs volume for different island types at 3°
miscut, in “natural units” V0= "! /S0#3 and E0=!3 /S0

2. Curves correspond to
solutions of Eq. "6# for different shapes, labeled HP, P, HD, etc., for half-
pyramid, pyramid, half-dome, etc. Circles highlight the crossing points.
Curves are shown as solid where they are stable and dashed where meta-
stable "passing above another curve#. Unstable solutions are not shown.
Inset shows the HP-P transition using a different thermodynamic reference
"i.e., adding a term proportional to V# for better visibility of the unstable
solution, which is included as a dotted line.

073114-2 B. J. Spencer and J. Tersoff Appl. Phys. Lett. 96, 073114 "2010#

Downloaded 24 Sep 2012 to 192.167.74.182. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

Figure: Shape transitions with increasing volume at miscut angle 3◦. Numerical simulation. Courtesy of B.
Spencer and J. Tersoff, Appl. Phys. Lett. bf 96/7, 073114 (2010)
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Surface Diffusion in Epitaxially Strained Solids. The
Context

With N. Fusco, G. Leoni, M. Morini

Einstein-Nernst volume preserving evolution law:

V = C ∆Γµ

V . . . normal velocity of evolving interface x ∆Γ . . . tangential
Laplacian
µ . . . chemical potential, first variation of the free-energy functional∫

Ωh

W (E(u)) dx +

∫
Γh

ϕ(θ)dH1

ϕ(θ) = ψ(cos θ, sin θ) with ψ(ξ) ∼ |ξ| ∈ C 2 away from the origin

Irene Fonseca Variational Methods for Crystal Surface Instability



ill-posed . . . so add a perturbation

Get (with C = 1)

V = ((ϕθθ + ϕ)k + W (E(u)))σσ

k . . . curvature of Γh

(·)σ . . . tangential derivative
u(·, t) . . . elastic equilibrium in Ωh(·,t) under periodic b. c.

V =

(
(ϕθθ + ϕ)k + W (E(u))−ε

(
kσσ +

1

2
k3

))
σσ

H−1- gradient flow for [Cahn and Taylor]; Wilmore

G (h) :=

∫
Ωh

W (E(u)) dx +

∫
Γh

(
ϕ(θ) +

ε

2
k2
)

dH1

De Giorgi’s minimizing movements: short time existence, uniqueness, regularity
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V =

(
(ϕθθ + ϕ)k + W (E(u))−ε

(
kσσ +

1

2
k3

))
σσ

H−1- gradient flow for [Cahn and Taylor]; Wilmore

G (h) :=

∫
Ωh

W (E(u)) dx +

∫
Γh

(
ϕ(θ) +

ε

2
k2
)

dH1

De Giorgi’s minimizing movements: short time existence, uniqueness, regularity

Irene Fonseca Variational Methods for Crystal Surface Instability



u minimizes

v 7→ F (v , h) :=

∫
Ωh

W (E(v)) dx +

∫
Γh

(
ϕ(θ) +

ε

2
k2
)

dH1

among sufficiently regular v ’s such that
• v(x , 0) = (e0x , 0)
• v(·, ·)− (e0x , 0) is b periodic
i.e.

v(x + b, y)− (e0(x + b), 0) = v(x , y)− (e0, 0)

for x ∈ R, 0 < y < h(x)
Rätz, Ribalta, Voigt, without elasticity
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What We Proved . . .

short time existence, uniqueness, and regularity of a spatially
periodic solution of the Cauchy problem (for b > 0)



1
J
∂h
∂t =

(
(ϕθθ + ϕ)k + W (E(u))− ε

(
kσσ + 1

2k3
))

σσ
, in R× [0,T0],

DivCE = 0 in Ωh,

CE(u)[ν] = 0 on Γh, u(x, 0, t) = e0(x, 0) ,

h(·, t) and ∇u(·, t) are b-periodic

h(·, 0) = h0

e0 . . . nonzero constant that reflects the mismatch between the crystalline lattices of the film and the substrate
h : R× [0,T0]→ (0,+∞) . . . one-dimensional function describing the profile Γh of the film

J :=

√
1 +

∣∣∣ ∂h
∂x

∣∣∣2 length factor of Γh, k := −
∂

∂x

(
∂h
∂x√

1 +
∣∣ ∂h
∂x

∣∣2
)
,

W (E(u)) = 1
2
CE(u) : E(u)

h0 ∈ H2
loc (R) . . . b-periodic function
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Strategy

Adopt De Giorgi’s minimizing movements: construct discrete
time evolutions by solving iteratively suitable minimum incremental
problems. minimizing movements have been already successfully implemented to treat various mean

curvature type flows without surface diffusion – e.g., Almgren, Taylor & Wang, Caselles & Chambolle, Bellettini,

Caselles, Chambolle & Novaga

Start with a b-periodic initial datum h0 ∈ H2
loc(R) and, given

T > 0, N ∈ N, for i = 1, . . . ,N, define inductively hi ,N as the
minimizer of

G (h) +
1

2τ
d2(h, hi−1,N)

τ := T
N , d suitable H−1-distance between h and hi−1,N

what is the ”right choice of d?
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The H−1 Distance

Given T > 0, N ∈ N, set ∆T := T
N . For i = 1, . . . ,N, define

inductively (hi ,N , ui ,N) as the solution of the minimum problem

min

{
F (h, u) +

1

2∆T

∫
Γhi−1,N

(∫ x

0

(
h(ζ)− hi−1,N(ζ)

)
dζ
)2

dH1(x , y) :

∫ b

0
h dx =

∫ b

0
h0 dx ,

∫
Γhi−1,N

∫ x

0
(h(ζ)− hi−1,N(ζ))dζdH1(x , y) = 0

}

For x ∈ R and (i − 1)∆T ≤ t ≤ i∆T , i = 1, . . . ,N, define

hN(x , t) := hi−1,N(x) +
1

∆T

(
t − (i − 1)∆T

)(
hi,N(x)− hi−1,N(x)

)
uN(·, t) . . . elastic equilibrium corresponding to hN(·, t)

i.e. minimizer of the elastic energy in ΩhN (·,t) among all admissible u
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Alternative Formulation of the Incremental Minimum
Problem

min

{
F (h, u) +

1

2∆T

∥∥∥h − hi−1,N

Ji−1,N

∥∥∥∥2

H−1(Γi−1,N)

: (h, u) admissible
}

Ji−1,N denotes the length factor of Γi−1,N

H−1(Γi−1,N)-norm is defined as:

‖f ‖2
H−1(Γ) =

(
sup

‖ϕ‖H1(Γ)=1

∫
Γ

f ϕ dH1

)2

=

∫
Γ

(
F (z)−−

∫
Γ

F dH1
)2

dH1(z) +

(∫
Γ

f dH1

)2

where F (z) :=
∫

Γ(z0,z) f (w) dH1(w)
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Existence, Regularity, Uniqueness

Theorem

h0 ∈ H2
#(0, b) strictly positive. There exists T0 s.t. evolution

problem admits a weak solution in [0,T0] with initial datum h0.

(i) h ∈ C 0,β([0,T0]; C 1,α([0, b])) for all α ∈ (0, 1
2 ) and

β ∈ (0, 1−2α
16 );

(ii) h ∈ L2(0,T0; H4
#(0, b));

(iii) if ψ ∈ C 3(R2 \ {0}) then h ∈ L2(0,T0; H5
#(0, b));

(iv) if ψ ∈ C 4 away from the origin, h0 ∈ H3
#(0, b), h0 > 0, then

h ∈ L2(0,T0; H6
#(0, b)) ∩ H1(0,T0; L2(0, b)).

ψ ∈ C 3(R2 \ {0}), h1, h2 two weak solutions in [0,T0] with initial
datum h0. Then h1 = h2.
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Proof

hN → h in L
12
5 (0,T0; C 2,1

# ([0, b])) ∩ L
24
5 (0,T0; C 1,1

# ([0, b])) . . .
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P. Piovano: Evaporation-Condensation

The profile of the film is modeled as a grain-vapor interface with
the vapor being considered as a reservoir that interacts with the
profile of the film only through the evaporation-condensation
process

Irene Fonseca Variational Methods for Crystal Surface Instability



Mullins: Evaporation-Condensation

derived the equations that describe the planar motion of isotropic
grain boundaries by evaporation-condensation: Up to a rescaling
(motion by mean curvature - elastic bulk energy)

V = (ϕθθ + ϕ)k −W (E(u))

Piovano undertook a similar analysis via De Giorgi’s minimizing
movements
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Material Voids . . . Pits? The Context

With N. Fusco, G. Leoni and V. Millot

material voids: Colin, Siegel, Miksis, Voorhees, Suo, Wang

Voids in UO2. Courtesy of M. Castell (2003)
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The Model

F (u,V ) :=

∫
B0\V

C(E(u)) · E(u) dx +

∫
∂V
ϕ(ν i ) ds,

u : B0 \ V → R2 . . . planar displacement

E(u) . . . symmetrized strain (2 D Linear Elasticity)

E(u) :=
1

2

(
∇u + (∇u)T

)
,

C positive definite fourth-order tensor,

C(E) · E > 0 for all symmetric matrices E 6= 0,

B0 ⊂ R2 fixed large ball, V ⊂ B0 material void

V closed, star-shaped, |V | = d > 0 fixed, ∂V Lipschitz,

ϕ : R2 → [0,∞) positively 1-homogeneous, Lipschitz, ν i inner
normal to ∂V .
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F (u,V ) :=

∫
B0\V

C(E(u)) · E(u) dz +

∫
∂V
ϕ(ν i ) ds.

Define XLip to be the family of all pairs (u,V ) such that

• V . . . closed, star-shaped, |V | = d > 0 fixed, ∂V Lipschitz

• u ∈ H1
loc

(
R2 \ V ;R2

)
, u = u0 a.e. in R2 \ B0.

Problem

Minimize F over all (u,V ) ∈ XLip.

Here u0 : R2 → R2 fixed, Lipschitz, determines the mismatch and
forces stress
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F (u,V ) :=

∫
B0\V

C(E(u)) · E(u) dz +

∫
∂V
ϕ(ν i ) ds.

The formulation follows Siegel, Miksis and Voorhees (2004) with:

B0 \ V in place of R2 \ V

u = u0 a.e. in B0 \ V in place of

C(E(u))→
(
σ1 0
0 σ2

)
as
√

x2 + y 2 →∞

void in an elastic solid
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Goals

F (u,V ) :=

∫
B0\V

C(E(u)) · E(u) dz +

∫
∂V
ϕ(ν i ) ds.

Consider

min
(u,V )∈XLip

F (u,V ) (P)

Existence of minimizers of (P)

Regularity of minimizers of (P).
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Existence of Minimizers

Consider minimizing sequence (un,Vn) ∈ XLip such that

lim
n→∞

F (un,Vn) = inf
(u,V )∈XLip

F (u,V ) .

Then

sup
n

∫
B0\Vn

|E(un)|2 dz <∞, sup
n

length ∂Vn <∞.

Up to a subsequence
• Vn → V in the Hausdorff metric
Braides, Chambolle and Solci, L1 convergence

• un ⇀ u in H1(ω;R2) for all ω b R2 \ V
for some
• V ⊂ B0 closed, star-shaped, |V | = d > 0 , V finite perimeter,
• u ∈ H1

loc

(
R2 \ V ;R2

)
, u = u0 a.e. in R2 \ B0

X . . . space of all such (u,V ) with these properties
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Relaxation

But F is not lower semicontinuous. Consider the relaxed energy

F(u,V ) :=inf
{

lim inf
n→∞

F (un,Vn) : (un,Vn) ∈ XLip, (un,Vn)→ (u,V )
}

Assume ϕ convex and V star-shaped w.r.t. 0.

Theorem (Fusco, Fonseca, G.L., & Millot)

F(u,V ) =

∫
B0\V

C(E(u)) · E(u) dz +

∫
∂∗V

ϕ
(
ν i
)

ds

+

∫
cuts

(
ϕ
(
ν i
)

+ ϕ
(
−ν i

))
ds for (u,V ) ∈ X
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Regularity of Minimizers

F(u,V ) =

∫
B0\V

C(E(u)) · E(u) dz +

∫
∂∗V

ϕ
(
ν i
)

ds

+

∫
cuts

(
ϕ
(
ν i
)

+ ϕ
(
−ν i

))
ds.

Since F is lower semicontinuous, there exists (u,V ) ∈ X such that

F (u,V ) = min
(u′,V ′)∈X

F
(
u′,V ′

)
= inf

(u′,V ′)∈XLip

F
(
u′,V ′

)
. (R)

Regularity of (u,V ) ?

Wullf set of ϕ is a polygon

Wulff set of ϕ is smooth

Irene Fonseca Variational Methods for Crystal Surface Instability



Regularity of Minimizers
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The Exterior Wulff Condition

Wulff set of ϕ,

W :=
{

w ∈ R2 : ϕ◦ (w) < 1
}

where ϕ◦ polar function of ϕ, i.e.,

ϕ◦ (w) := max
|z|=1

z · w
ϕ (z)

, w ∈ R2.

Theorem (Fusco, Fonseca, G.L., & Millot)

Let (u,V ) ∈ X be a minimizer of (R). Then there is %0 > 0 such
that for all z ∈ ∂V there is w ∈ R2 such that w + %0W ⊂ R2 \ V
and z ∈ ∂ (w + %0W ).
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Interior Sphere Condition:

Chambolle and Larsen (2003), when the Wulff shape is the ball
Fonseca, Fusco, G. L., and Morini (2007)
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The Polygonal Case

Sulfur http://www.ctcms.nist.gov
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The Polygonal Case

Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is a polygon with internal angles
greater than π

2 . Let (u,V ) ∈ X be a minimizer of (R). Then ∂V is
the union of finitely many Lipschitz graphs.

V + :=
{

(r cos θ, r sin θ) : θ ∈ [0, 2π] , 0 ≤ r ≤ ρ+
V (θ)

}
.

V = V + ∪ cuts, only finitely many cuts

there is a finite set Γsing ⊂ ∂V + such that if z ∈ ∂V + \ Γsing,
then near z the set ∂V is the graph of a Lipschitz function

if z ∈ Γsing, z 6= 0, then near z , the set ∂V \cuts is the union
of two graphs of Lipschitz functions intersecting only at z

if 0 ∈ Γsing, then near 0, the set ∂V is the union of at most
six graphs of Lipschitz functions intersecting only at 0
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The Smooth Case

Isotropic: http://www.ctcms.nist.gov
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Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is of class C 1. Let (u,V ) ∈ X be a
minimizer of (R). Then except for a finite number of points
∂V \ cuts is of class C 1.

V + :=
{

(r cos θ, r sin θ) : θ ∈ [0, 2π] , 0 ≤ r ≤ ρ+
V (θ)

}
.

V = V + ∪ cuts, only finitely many cuts

there is a finite set Γcusp ⊂ ∂V + such that if z ∈ ∂V + \ Γcusp,
then near z the set ∂V is the graph of a C 1 function

if z ∈ Γcusp, then near z , the set ∂V \cuts is the union of two
graphs of Lipschitz functions intersecting only at z and
differentiable at z
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Bonacini and Piovano

Recently they proved regularity results in the context of material
voids in elastic solids that hold true for any dimension and without
the restriction that the voids are starshaped
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