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Epitaxy: Outline

e Quantum Dots: wetting and zero contact angle. Shapes of
islands

e surface diffusion in epitaxially strained solids

e material voids
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Quantum Dots. The Context

With N. Fusco, G. Leoni, M. Morini J

Strained epitaxial films on a relatively thick substrate; the thin film
wets the substrate.

Islands develop without forming dislocations — Stranski-Krastanow
growth

plane linear elasticity (In-GaAs/GaAs or SiGe/Si)

o free surface of film is flat until reaching a critical thikness
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With N. Fusco, G. Leoni, M. Morini J

Strained epitaxial films on a relatively thick substrate; the thin film
wets the substrate.

Islands develop without forming dislocations — Stranski-Krastanow
growth

plane linear elasticity (In-GaAs/GaAs or SiGe/Si)

o free surface of film is flat until reaching a critical thikness

o lattice misfits between substrate and film induce strains in the
film

o Complete relaxation to bulk equilibrium = crystalline
structure would be discontinuous at the interface

o Strain = flat layer of film morphologically unstable or
metastable after a critical value of the thickness is reached
(competition between surface and bulk energies)
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Islands

To release some of the elastic energy due to the strain: atoms on
the free surface rearrange and morphologies such as formation of
island (quatum dots) of pyramidal shapes are energetically more

economical
the profile
yl- y= h{x)
e e .
I
.9(,' Fr L ORI B S S A A A
v?f%:f ; zﬁg

Kinetics of Stranskl-Krastanow depend on initial thickness
of film, competition between strain and surface energies,
anisotropy, ETC.
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Quantum Dots: "semiconductors whose characteristics are closely
related to size and shape of crystals”

transistors, solar cells, optical and optoelectric devices (quantum

dot laser), medical imaging, information storage, nanotechnology

electronic properties depend on the regularity of the dots, size,
spacing, etc.
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Sharp Interface Model

h:R —[0,00) b-periodic, Lipschitz
Q Qn = {(x,y): 0<x<b, 0<y<h(x)}
’ |b ththﬂ{y>0}
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Sharp Interface Model

h:R —[0,00) b-periodic, Lipschitz
Q Qn = {(x,y): 0<x<b, 0<y<h(x)}
’ |b ththﬂ{y>0}

o [, = free profile of the film

o Q = reference configuration of the film, |Q4| = d, d given
o u: Q) — R? = displacement of the film

o u(x,0) = (ex,0), u(b,y) = u(0,y) + (eb,0)

@ ¢y > 0 measures the mismatch between the two lattices

Irene Fonseca Variational Methods for Crystal Surface Instability



Sharp Interface Model

h:R —[0,00) b-periodic, Lipschitz
Q Qn = {(x,y): 0<x<b, 0<y<h(x)}
’ |b ththﬂ{y>0}

o [, = free profile of the film

o Q4 = reference configuration of the film, |Qn| = d, d given
o u: Q) — R? = displacement of the film

o u(x,0) = (ex,0), u(b,y) = u(0,y) + (eb,0)

o ey > 0 measures the mismatch between the two lattices
Brian Spencer, Bonnetier and Chambolle, Chambolle and Larsen; Caflish, W. E, Otto, Voorhees, et. al.

epitaxial thin films: Gao and Nix, Spencer and Meiron, Spencer and Tersoff, Chambolle, Braides, Bonnetier, Solci,

F., Fusco, Leoni, Morini

anisotropic surface energies: Herring, Taylor, Ambrosio, Novaga, and Paolini, Fonseca and Miiller, Morgan
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mismatch strain (at which minimum energy is attained)

[ ei®i ify >0,
EO(y)_{o if y <0,

e >0
i the unit vector along the x direction
elastic energy per unit area: W (E — Eg (y))

W (E) := %E -C[E], E(u):= %(VH (Vu)T)

C ... positive definite fourth-order tensor
film and substrate have similar material properties, share the same
homogeneous elasticity tensor C
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_J 7im ify >0,
(PO(y) _{ Ysub |fy:0

Total energy of the system:

Flu.):= | W(EW ) -E ) dx+ /r vo(y) dH (x).

[p =00, N ((0,b) X R) ... free surface of the film
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Hard to Implement . ..

Sharp interface model is difficult to be implemented numerically.
Instead: boundary-layer model; discontinuous transition is
regularized over a thin transition region of width ¢ (“smearing
parameter” ).

Es (y) := %e0<1+f(§))i®i, y €R,

05 (¥) = Ysub + (Veilm — Ysub) (%) , ¥y =0,

f(0)=0, lim f(y)=-1, Ilm f(y)=1.

y——00 y—o0
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Regularized total energy of the system

Fo . 2) = [ W (E () ()~ Es ) det /r o5 (v) dH ()

Yfilm = VYsub

Two regimes : {
Vilm < Ysub
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Wetting, etc.

asymptotics as § — 0

@ Yfilm < Ysub
relaxed surface energy density is no longer discontinuous: it is
constantly equal to fim. .. WETTING!
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Wetting, etc.

asymptotics as § — 0T

9 Yfilm < Vsub
relaxed surface energy density is no longer discontinuous: it is
constantly equal to fim. .. WETTING!

@ more favorable to cover the substrate with an infinitesimal
layer of film atoms (and pay surface energy with density 7fiim)
rather than to leave any part of the substrate exposed (and
pay surface energy with density ysup)
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Wetting, etc.

asymptotics as § — 0T

9 Yfilm < Vsub
relaxed surface energy density is no longer discontinuous: it is
constantly equal to fim. .. WETTING!

@ more favorable to cover the substrate with an infinitesimal
layer of film atoms (and pay surface energy with density 7fiim)
rather than to leave any part of the substrate exposed (and
pay surface energy with density ysup)

o wetting regime: regularity of local minimizers (u, Q) of the
limiting functional F., under a volume constraint.
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cusps and vertical cuts

The profile h of the film for a locally minimizing configuration is
regular except for at most a finite number of cusps and vertical cuts
which correspond to vertical cracks in the film.

[Spencer and Meiron|: steady state solutions exhibit cusp
singularities, time-dependent evolution of small disturbances of the
flat interface result in the formation of deep grooved cusps (also
[Chiu and Gao]); experimental validation of sharp cusplike features
in Slo.s Geo.4
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The profile h of the film for a locally minimizing configuration is
regular except for at most a finite number of cusps and vertical cuts
which correspond to vertical cracks in the film.

[Spencer and Meiron|: steady state solutions exhibit cusp
singularities, time-dependent evolution of small disturbances of the
flat interface result in the formation of deep grooved cusps (also
[Chiu and Gao]); experimental validation of sharp cusplike features
in S|0_6 Geo.4

zero contact-angle condition between the wetting layer and islands

cusp

| contact angle :z%ro
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o conclude that the graph of his a Lipschitz continuous curve
away from a finite number of singular points (cusps, vertical
cuts).

this takes us to
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o conclude that the graph of his a Lipschitz continuous curve
away from a finite number of singular points (cusps, vertical
cuts).

@ ...and more: Lipschitz continuity of h +blow up
argument+-classical results on corner domains for solutions of
Lamé systems of h = decay estimate for the gradient of the
displacement u near the boundary = C% regularity of h and
Vu; bootstrap.

this takes us to linearly isotropic materials
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Linearly Isotropic Elastic Materials

1
W (E) = 5A[tr(E)]2 + ptr (E?)
A and p are the (constant) Lamé moduli
w>0, pu+A>0.

Euler-Lagrange system of equations associated to W

pAu+ (A + p) V(divu) =0 in Q. J
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Regularity of I': No Corners

I_sing = rcusps U {(X’ h(X)) : h(X) < h_(X)}
Already know that [ is finite.

(u, Q) € X ...0-local minimizer for the functional F.
Then T\ [gng is of class Clo forall 0 < o < %

As an immediate corollary, get the zero contact-angle condition

Corollary

(u, Q) € X ...local minimizer for the functional F.
If zo = (x0,0) € I\ ['sing then A’ (xg) = 0.
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Shapes of Islands

With A. Pratelli and B. Zwicknagl| J

We proved that the shape of the island evolves with the size (and
size varies with misfit! ... later ...):

small islands always have the half-pyramid shape, and as the
volume increases the island evolves through a sequence of shapes
that include more facets with increasing steepness — half pyramid,
pyramid, half dome, dome, half barn, barn
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Shapes of Islands

With A. Pratelli and B. Zwicknagl| J

We proved that the shape of the island evolves with the size (and
size varies with misfit! ... later ...): J

small islands always have the half-pyramid shape, and as the
volume increases the island evolves through a sequence of shapes
that include more facets with increasing steepness — half pyramid,
pyramid, half dome, dome, half barn, barn

This validates what was experimentally and numerically obtained
in the physics and materials science literature
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Another incompatibility: miscut

Focus on small volume case. Small slope approximation ([Tersoff &
Tromp, 1992; Spencer & Tersoff, 2010]):

w W
E(u) ~ /0 /0 log |x — y|u'(x)u'(y) dydx + length(Graph(u)) — W,

height profile u, supp(h) = [0, W]
fully facetted model:

v e A= {tan(—0, +nb): ne N CZ}

o O, describes miscut. If 6, # 0, wetting not admissible

substrate

Flgu €. Sketch of a faceted height profile function u with support [0, W]. The profile is Lipschitz and the
derivative lies almost everywhere in a discrete set. The miscut angle is denoted by 6, # 0, i.e., the preferred
orientation o ne m no paralie o the D ate ace
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Compactness bounds on the support of u

Set F(d) :=inf{E(u) : [u=d}

o fForevery d, r > 0 there exists_W such that if
E(u) < F(d)+r, then W < W.

o Ifd > 0andr— 0, then W — 0.
— no wetting effect for small volumes; wetting— optimal
profiles tend to be extremely large and flat when the mass is
small.

o Every minimizer satisfies the quantized zero contact angle
property

o There is a volume d > 0 such that the half pyramid is the
unique minimizer for every d € (0,d).
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barn

half barn

dome

half dome

pyramid

half pyramid

N

Shape transitions with increasing volume at miscut angle 3°. Numerical simulation. Courtesy of B.
Spencer and J. Tersoff, Appl. Phys. Lett. bf 96/7, 073114 (2010)

Carnegie
Mell .
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Surface Diffusion in Epitaxially Strained Solids. The

Context

With N. Fusco, G. Leoni, M. Morini J

Einstein-Nernst volume preserving evolution law:

V =CAru

V ...normal velocity of evolving interface x Ar ... tangential

Laplacian
1 ... chemical potential, first variation of the free-energy functional

W(E(u)) dx + / o(0)dH!
Qp Th

©(0) = (cosf,sinf)  with (&) ~ |£] € C? away from the origin
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ill-posed ...so add a perturbation

Get (with C =1)

V = ((pee + )k + W(E(u))),,

k ...curvature of 'y,
(*)o -..tangential derivative
u(-, t) ... elastic equilibrium in Q4. ) under periodic b. c.
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ill-posed ...so add a perturbation

Get (with C =1)

V = ((pee + )k + W(E(u))),,

k ...curvature of I'p
(-)o - - .tangential derivative
u(-, t) ... elastic equilibrium in Q4. ) under periodic b. c.

V= ((<P90 + @)k + W(E(u))—e (k‘” - %k3>)ao

H_l— gradient flow for [Cahn and Taylor]; Wilmore

e
G(h) = / W(E(u))dx+/ (#(0) + 5K2) drt
Qp Th
De Giorgi's mInImIZIng movements: short time existence, uniqueness, regularity
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U minimizes

v F(vh) = | W(E(v))dx—i—/r <¢(9)+§k2) d!

among sufficiently regular v's such that
e v(x,0) = (epx,0)

o v(-,-) — (eox,0) is b periodic

i.e.

v(x + b,y) = (eo(x + b),0) = v(x,y) — (&,0)
for x e R,0 < y < h(x)

Ratz, Ribalta, Voigt, without elasticity
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What We Proved . ..

short time existence, uniqueness, and regularity of a spatially
periodic solution of the Cauchy problem (for b > 0)

(192 = (w00 + 9)k + W(E()) — (koo + 3K3)) , in R x [0, To],
DWVCE =0 inQ, ”

CE(u)[¥] =0 on Ty, u(x,0,t) = eg(x,0),

h(-,t) and Vu(-,t) are b-periodic

| h(-,0) = hq

€p ...nonzero constant that reflects the mismatch between the crystalline lattices of the film and the substrate
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What We Proved . ..

short time existence, uniqueness, and regularity of a spatially
periodic solution of the Cauchy problem (for b > 0)

(192 = ((poo + 9)k + W(EW) — (koo + 3K%)) . in R x [0, To],
DWVCE =0 inQ,

CE(u)[¥] =0 on Ty, u(x,0,t) = eg(x,0),
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h:R x [0, To] = (0,400) ...one-dimensional function describing the profile [, of the film

oh 2 76 i
Ji= 1+|8—) length factor of 'y, k::_B (ﬁ) ’
X x 1+|6x|

Irene Fonseca Variational Methods for Crystal Surface Instability



What We Proved . ..

short time existence, uniqueness, and regularity of a spatially
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What We Proved . ..

short time existence, uniqueness, and regularity of a spatially
periodic solution of the Cauchy problem (for b > 0)

(192 = ((poo + 9)k + W(EW) — (koo + 3K%)) . in R x [0, To],
DWVCE =0 inQ,

CE(u)[¥] =0 on Ty, u(x,0,t) = eg(x,0),

h(-,t) and Vu(-,t) are b-periodic

| h(-,0) = ho

...nonzero constant that reflects the mismatch between the crystalline lattices of the film and the substrate
h:R x [0, To] = (0,400) ...one-dimensional function describing the profile [, of the film

oh 2 76 i
Ji= 1+|8—) length factor of 'y, k::_B (ﬁ) ’
X x 1+|6x|

W(E(u)) = 1CE(u) : E(u)

hy € H2(R) ... b-periodic function
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Strategy

Adopt De Giorgi’s minimizing movements: construct discrete
time evolutions by solving iteratively suitable minimum incremental
problems. minimizing movements have been already successfully implemented to treat various mean
curvature type flows without surface diffusion — e.g., Almgren, Taylor & Wang, Caselles & Chambolle, Bellettini,

Caselles, Chambolle & Novaga

Start with a b-periodic initial datum hy € H2_(R) and, given
T>0 NeN,fori=1,...,N, define inductively h; y as the
minimizer of

1

G(h) + Zdz(h, hi—1.n)

T = % d suitable H~!-distance between h and hi—i,n
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Adopt De Giorgi’s minimizing movements: construct discrete
time evolutions by solving iteratively suitable minimum incremental
problems. minimizing movements have been already successfully implemented to treat various mean
curvature type flows without surface diffusion — e.g., Almgren, Taylor & Wang, Caselles & Chambolle, Bellettini,

Caselles, Chambolle & Novaga

Start with a b-periodic initial datum hy € H2_(R) and, given
T>0 NeN,fori=1,...,N, define inductively h; y as the
minimizer of

1
G(h) + Zdz(h, hi—1.n)

T = % d suitable H~!-distance between h and hi—i,n
what is the "right choice of d?
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The H~! Distance

Given T >0, N €N, set AT := L. Fori=1,..., N, define
inductively (hj n, uj ) as the solution of the minimum problem

mm{F(h u) + 2A1T/ (/Ox(h(C)_ i~1.n(C)) d¢ >2d’H1(X y):

/hdx_/h"dx/r,,/ h(C) - ,1N(<))dCdH(xy)—0}
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The H~! Distance

Given T >0, N€ N, set AT := L. Fori=1,..., N, define
inductively (hj n, uj ) as the solution of the minimum problem

mln{F(h u) + 2A1T/ (/Ox(h(C)_ i~1.n(C)) d¢ >2d7{1(X y):

/hdx_/h"dx/r,,/ h(C) - ,1N(<))d<dH(xy)—0}

Forx e Rand (i —1)AT <t <iAT,i=1,...,N, define

1
hN(X, t) = hi—l,N( ) AT (t = (I = 1)AT) (h,',N(X) = hi—l,N(X))
un(+,t) ... elastic equilibrium corresponding to hn(-, t)

i.e. minimizer of the elastic energy in €, (. ;) among all admissible u

Irene Fonseca Variational Methods for Crystal Surface Instability



Alternative Formulation of the Incremental Minimum

Problem

h — h;
min{F(h,u) 2ATH ;IJN
I

Ji—1,n denotes the length factor of I';_1 y
H_l(l',-_l,N)-norm is defined as:

2
17111y = ( sup / fgad?-l1>
”‘P”Hl(r):l r
2 2
= /(F(z) —Jchml) dH(z) + (/fd?—l1>
r r r

where F(z) : fr(zg,z) w) dH(w)

- (h, u) admissible}
H=1(Fi—1,n)
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Existence, Regularity, Uniqueness

ho € H%&(O, b) strictly positive. There exists Ty s.t. evolution
problem admits a weak solution in [0, To| with initial datum hg.
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Existence, Regularity, Uniqueness

Theorem

ho € Hi(O, b) strictly positive. There exists Ty s.t. evolution

problem admits a weak solution in [0, To| with initial datum hg.

(1) he COB([o, Tol; C1o([0, b])) for all a € (0, 3) and
B € (0, 1522);

(i) h e L?(0, To; HL(0, b));

(iii) ifp € C3(R?\ {0}) then h € L?(0, To; H2(0, b));

(iv) ify € C* away from the origin, hy € H;(O, b), hg > 0, then
h € L2(0, To; H%(0, b)) N H(0, To; L3(0, b)).
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Existence, Regularity, Uniqueness

Theorem

ho € Hi(O, b) strictly positive. There exists Ty s.t. evolution

problem admits a weak solution in [0, To| with initial datum ho.

(1) he COB([o, Tol; C1o([0, b])) for all a € (0, 3) and
Be(0,355%);

(i) h e L?(0, To; HL(0, b));

(iii) ifp € C3(R?\ {0}) then h € L?(0, To; H2(0, b));

(v) ifyp € C* away from the origin, hy € H}(0, b), ho > 0, then
h € L2(0, To; H%(0, b)) N H(0, To; L3(0, b)).

Y € C3(R2\ {0}), h1, hy two weak solutions in [0, To] with initial

datum hg. Then hy = hy.
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hy —h in L% (0, To; C2'([0, b])) N L5 (0, To; C([0, b)) ...
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P. Piovano: Evaporation-Condensation

The profile of the film is modeled as a grain-vapor interface with
the vapor being considered as a reservoir that interacts with the

profile of the film only through the evaporation-condensation
process

vapor ] .[ f s

film Taee
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Mullins: Evaporation-Condensation

derived the equations that describe the planar motion of isotropic
grain boundaries by evaporation-condensation: Up to a rescaling
(motion by mean curvature - elastic bulk energy)

V = (o9 + p)k — W(E(u))

Piovano undertook a similar analysis via De Giorgi's minimizing
movements
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Material Voids ... Pits?

With N. Fusco, G. Leoni and V. Millot J

material voids: Colin, Siegel, Miksis, Voorhees, Suo, Wang
[017] [101]
[170]

Voids in UO,. Courtesy of M. Castell (2003)
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The Model

Flu, V) = /BO\V(C(E(U))  E(u) dx—l—/av o(v) ds, }

o u:By\V —R? .. planar displacement
o E(u) ...symmetrized strain (2 D Linear Elasticity)

E(u) := %(VU +(Vu)T),
o C positive definite fourth-order tensor,
C(E) - E > 0 for all symmetric matrices E # 0,
o By C R? fixed large ball, V C By material void
V closed, star-shaped, |V|= d > 0 fixed, OV Lipschitz,

o ¢ :R? = [0, 00) positively 1-homogeneous, Lipschitz, v/ inner [
normal to OV. '
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1%

Flu,V) = /BO\V(C(E(U))-E(U) dz+/8 o(V') ds. J

Define X, to be the family of all pairs (u, V') such that
e V... closed, star-shaped, |V| = d > 0 fixed, 9V Lipschitz
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1%

Flu,V) = /BO\V(C(E(U))-E(U) dz+/8 o(V') ds. |

Define X, to be the family of all pairs (u, V') such that
e V... closed, star-shaped, |V| = d > 0 fixed, 9V Lipschitz
o uE H&)C (Rz \ V;]R2), u=upa.e. in R? \ Bo.
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Bo\V

F(u,V):= C(E(u)) - E(u) dz + /av o(v') ds. }

Define X, to be the family of all pairs (u, V') such that
e V.. .closed, star-shaped, |V| = d > 0 fixed, OV Lipschitz
e yucE H&)C (R2\ V;Rz), u=uga.e. in R2 \ Bo.

Problem
Minimize F over all (u, V) € X_jp.

Here up : R? — R? fixed, Lipschitz, determines the mismatch and
forces stress
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F(u,V) = /BO\VC(E(U)) - E(u) dz+/8v o(v') ds. J

The formulation follows Siegel, Miksis and Voorhees (2004) with:
o By \ V in place of R?\ V

@ u=up a.e. in By\ V in place of

void in an elastic solid




Goals

Flu, V) = /BO\V C(E(u)) - E(u) dz + /av (1) ds.

Consider

min  F(u,V P
(u,V)IEXLip (U ) ( )

o Existence of minimizers of (P)

o Regularity of minimizers of (P).
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Existence of Minimizers

Consider minimizing sequence (up, Vi) € Xijp such that

lim F(up, Vo) = inf F(u,V).

n—=00 (u,V)EXLip
Then
sup/ |E(un)[? dz < oo, suplengthdV, < co.
0 Vi n

n
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Existence of Minimizers

Consider minimizing sequence (up, Vi) € Xijp such that

lim F(up, Vo) = inf  F(u V).
nl_>r20 (u ) (U,VI?EXUP (u )

Then
sup/ |E(un)[? dz < oo, suplengthdV, < co.
o\ Vi W

n

Up to a subsequence

e V, — V in the Hausdorff metric

Braides, Chambolle and Solci, L! convergence

o u, — uin HY{(w;R?) for all w € R?\ V

for some

e V C By closed, star-shaped, |V|=d >0, V finite perimeter,
eucHL (R?\ V;R?), u=uwpae. inR?\ By
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Existence of Minimizers

Consider minimizing sequence (up, Vi) € Xijp such that

lim F(up, Vo) = inf  F(u V).
nl_>r20 (u ) (U,VI?EXUP (u )

Then
sup/ |E(un)[? dz < oo, suplengthdV, < co.
o\ Vi W

n

Up to a subsequence

e V, — V in the Hausdorff metric

Braides, Chambolle and Solci, L! convergence

o u, — uin HY{(w;R?) for all w € R?\ V

for some

e V C By closed, star-shaped, |V|=d >0, V finite perimeter,
eucHL (R?\ V;R?), u=uwpae. inR?\ By

X ...space of all such (u, V) with these properties
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Relaxation

But F is not lower semicontinuous. Consider the relaxed energy

F(u, V):=inf {ILnlLr;f F (tn, V) : (ttn; Vi) € Xtips (tn, Vi) — (u, V)

Assume ¢ convex and V star-shaped w.r.t. 0.

Theorem (Fusco, Fonseca, G.L., & Millot)
F(u, V)=/ C(E(v)) - E(u) dz+/ ¢ (V') ds
Bo\V o~V

#[ @) () b for(wv)ex
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Regularity of Minimizers

F(u, V)= /BO\V(C(E(u)) -E(u) dz + /a*vgo (v') ds
+ /CUtS (¢ (V') + ¢ (=v')) ds.

Since F is lower semicontinuous, there exists (u, V) € X such that

V)= mi VY= inf  F(W,V). (R
]:(U7 ) (U'T/I';]EXI (U ’ ) (U’,\/IP)EXUP (u ’ ) ( )
Regularity of (u, V) ? J

o Wullf set of ¢ is a polygon

Irene Fonseca Variational Methods for Crystal Surface Instability



Regularity of Minimizers

F(u, V)= /BO\V(C(E(u)) -E(u) dz + /a*vgo (v') ds
+ /CUtS (¢ (V') + ¢ (=v')) ds.

Since F is lower semicontinuous, there exists (u, V) € X such that

V)= i V)= inf  F(Jd,V). R
]:(U7 ) (U’T/I';]EXI (U ’ ) (u’,\/lp)EXLip (U 7 ) ( )
Regularity of (u, V) ? J

o Wullf set of ¢ is a polygon
o Waulff set of ¢ is smooth
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The Exterior Wulff Condition

Waulff set of ¢,
W:={weR?: ¢°(w) <1}
where ¢° polar function of ¢, i.e.,

z-w
°(w) := max ——, w e R
o (w) =1 ¢ (2)

Theorem (Fusco, Fonseca, G.L., & Millot)

Let (u, V') € X be a minimizer of (R). Then there is pg > 0 such
that for all z € OV there is w € R? such that w + goW C R?\ V
and z € 9 (w + oo W).
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Interior Sphere Condition:

Chambolle and Larsen (2003), when the Wulff shape is the ball
Fonseca, Fusco, G. L., and Morini (2007)
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The Polygonal Case

Sulfur http://www.ctcms.nist.gov
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The Polygonal Case

Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is a polygon with internal angles
greater than 5. Let (u, V) € X be a minimizer of (R). Then 0V is
the union of finitely many Lipschitz graphs.

V*ti={(rcosf,rsinf): §€[0,2r], 0 <r<pl(0)}.

o V = VT Ucuts, only finitely many cuts

Irene Fonseca Variational Methods for Crystal Surface Instability



The Polygonal Case

Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is a polygon with internal angles
greater than 5. Let (u, V) € X be a minimizer of (R). Then 0V is
the union of finitely many Lipschitz graphs.

V*ti={(rcosf,rsinf): §€[0,2r], 0 <r<pl(0)}.

o V = VT Ucuts, only finitely many cuts

o there is a finite set Mgng C OV such that if z € OV \ Tging,
then near z the set JV is the graph of a Lipschitz function
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The Polygonal Case

Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is a polygon with internal angles
greater than 5. Let (u, V) € X be a minimizer of (R). Then 0V is

the union of finitely many Lipschitz graphs.

V*ti={(rcosf,rsinf): §€[0,2r], 0 <r<pl(0)}.

o V = VT Ucuts, only finitely many cuts
o there is a finite set Mgng C OV such that if z € OV \ Tging,
then near z the set JV is the graph of a Lipschitz function

o if z € [gng, z # 0, then near z, the set 9V\cuts is the union
of two graphs of Lipschitz functions intersecting only at z
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The Polygonal Case

Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is a polygon with internal angles
greater than 5. Let (u, V) € X be a minimizer of (R). Then 0V is
the union of finitely many Lipschitz graphs.

V*t = {(rcosf,rsinf): 6 €[0,2n], 0<r < p{(0)}.

o V = VT Ucuts, only finitely many cuts
o there is a finite set Mgng C OV such that if z € OV \ Tging,
then near z the set JV is the graph of a Lipschitz function

o if z € [gng, z # 0, then near z, the set 9V\cuts is the union
of two graphs of Lipschitz functions intersecting only at z

o if 0 € [ging, then near 0, the set V' is the union of at most
six graphs of Lipschitz functions intersecting only at 0
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The Smooth Case

Isotropic: http://www.ctcms.nist.gov
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Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is of class C1. Let (u, V) € X be a
minimizer of (R). Then except for a finite number of points
OV \ cuts is of class C1.

V*ti={(rcosf,rsinf): 9 €[0,2r], 0 < r < pl(0)}.

o V = VT Ucuts, only finitely many cuts
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Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is of class C1. Let (u, V) € X be a
minimizer of (R). Then except for a finite number of points
OV \ cuts is of class C1.

V*ti={(rcosf,rsinf): 9 €[0,2r], 0 < r < pl(0)}.

o V = VT Ucuts, only finitely many cuts

o there is a finite set M'cysp C OV such that if z € OV \ Teuep,
then near z the set OV is the graph of a C! function
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Theorem (Fusco, Fonseca, G.L., & Millot)

Assume that the Wulff set W is of class C1. Let (u, V) € X be a
minimizer of (R). Then except for a finite number of points

OV \ cuts is of class C1.

V*ti={(rcosf,rsinf): 9 €[0,2r], 0 < r < pl(0)}.

o V = VT Ucuts, only finitely many cuts

o there is a finite set M'cysp C OV such that if z € OV \ Teuep,
then near z the set OV is the graph of a C! function

o if z € [cusp, then near z, the set OV/\cuts is the union of two
graphs of Lipschitz functions intersecting only at z and
differentiable at z
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Bonacini and Piovano

Recently they proved regularity results in the context of material
voids in elastic solids that hold true for any dimension and without
the restriction that the voids are starshaped
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