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Epitaxial growth

A heterostructure is a material obtained
through epitaxial growth, i.e., by deposition
of atoms of one material (overlayer)
on top of another material (underlayer).

The materials have different lattice constants.

{

Fewer atoms → Strain compensates the lattice mismatch

More atoms → Formation of misfit dislocations at the interface

We study the formation of dislocations in heteronanowires,
i.e., longitudinally heterostructured very thin string-shaped devices.
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Aim of the work

We look for conditions for the formation of dislocations in heteronanowires.

dislocation line

Schematic of heteronanowire
before and after interfacial bonding
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Aim of the work

We look for conditions for the formation of dislocations in heteronanowires.

dislocation line

Schematic of heteronanowire
before and after interfacial bonding

Our model:

• Start from a discrete thin lattice of atoms

• Passage from discrete to continuum

• Dimension reduction 2d → 1d or 3d → 1d
In this talk: 2d → 1d

Continuum model: Müller-Palombaro (2012)
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Concept of the model

We compare two models, with different reference configurations.
Assumption: The system chooses the best geometry of nearest neighbours.

elastic strain

elastic strain
+

dislocation

Figures: Longitudinal section of the beam in the microscopic picture
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Rigidity

Our proof relies on a rigidity estimate. In order to enforce rigidity, we

• choose a rigid lattice (e.g., triangular in dim two, fcc in dim three),

• assume that the deformation satisfies the non-interpenetration.

Non-interpenetration condition
A discrete deformation u satisfies the non-interpenetration if
the image of each element of the triangulation has positive orientation.
Equivalently: The Jacobian determinant of the affine interpolation is positive.

1

3 3

2 21

This deformation is ruled out by
the non-interpenetration condition.

See e.g. Friesecke-Theil (2002), Braides-Solci-Vitali (2007), Braides-Gelli (2013)
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Rigidity

Our proof relies on a rigidity estimate. In order to enforce rigidity, we

• choose a rigid lattice (e.g., triangular in dim two, fcc in dim three),

• assume that the deformation satisfies the non-interpenetration.

Non-interpenetration condition
A discrete deformation u satisfies the non-interpenetration if
the image of each element of the triangulation has positive orientation.
Equivalently: The Jacobian determinant of the affine interpolation is positive.

This allows us to employ the

Rigidity estimate (Friesecke-James-Müller 2002)

∃C : ∀u ∈ H1 ∃R ∈ SO(n) : ‖∇u − R‖L2 ≤ C‖dist (∇u,SO(n))‖L2
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Defect-free model

ε ε

kε

2L

Reference configuration: planar hexagonal Bravais lattice
with lattice distance ε → 0.
The reference domain is a parallelogram
with length 2L independent of ε ,
containing k + 1 lines of atoms
→ dimension reduction

Deformed configuration: equilibrium distances ε (left), λε (right), λ ∈ (0, 1)
uε deformation (piecewise affine interpolation)
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Defect-free model

ε ε

kε

2L

Nearest neighbours interaction

Edf
ε
(uε) :=

ε

2
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∣

∣

∣
− λ

)2

Edf
ε

is studied in Alicandro-Braides-Cicalese (2008) and Schmidt (2008).
However, at this scaling one cannot see dislocations since inf Edf

ε
= O(ε) .

Hence we rescale the functional.

Giuliano Lazzaroni (SISSA) Dislocations in nanowire heterostructures 6 / 14



Defect-free model
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2L
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Rescaled functional

Fdf
ε
(uε) :=

{

ε
−1 Edf

ε
(uε) if uε satisfies the non-interpenetration

+∞ otherwise

Continuum models: Mora-Müller (2007) and Müller-Palombaro (2012).
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Model with dislocations

ε λε

kε

2L

We insert more lines in the right part → Edge dislocations on the interface.
“Dislocation” means here that the coordination number is not constant
(it is the number of nearest neighbours of an internal atom).

Giuliano Lazzaroni (SISSA) Dislocations in nanowire heterostructures 7 / 14



Model with dislocations

ε λε

kε

2L

We insert more lines in the right part → Edge dislocations on the interface.
The nearest neighbours are determined by the Delaunay triangulation.

Voronoi diagram

Delaunay triangulation
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Model with dislocations

ε λε

kε

2L

We insert more lines in the right part → Edge dislocations on the interface.
The nearest neighbours are determined by the Delaunay triangulation.

Actually it is enough to choose any triangulation with properties of uniformity:
• bounded number of nearest neighbours per atom (uniformly in k and ε)

• bounded length of the bonds in the reference (uniformly in k , linear in ε)
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Model with dislocations

ε λε

kε

2L

Nearest neighbours interaction and rescaling

Edisl
ε

(uε) :=
ε

2
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∣

∣
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∣

∣
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∣
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∣

∣
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Fdisl
ε

(uε) :=

{

ε
−1 Edisl

ε
(uε) if uε satisfies the non-interpenetration

+∞ otherwise
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Passage to the limit as ε → 0+

In the next slides we consider the lattice with dislocations
(similar results hold for the defect-free one).

1 Compactness: We rescale to a parallelogram independent of ε

Compactness: and find that (rescaled) deformations with

Compactness: equibounded energy converge to “short maps”

Compactness: {u depending only on x1 , |∂1u| ≤ 1} .

εk

Ωε

Ω− Ω+

Ω

k
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Passage to the limit as ε → 0+

In the next slides we consider the lattice with dislocations
(similar results hold for the defect-free one).

1 Compactness: We rescale to a parallelogram independent of ε

Compactness: and find that (rescaled) deformations with

Compactness: equibounded energy converge to “short maps”

Compactness: {u depending only on x1 , |∂1u| ≤ 1} .

2 Γ- lim inf : After passing to a dilated lattice, we bound the functional

Γ- lim inf : by the minimum cost of transitions between equilibria.

γ
disl(k) = inf

v ,M

{

Fdisl
1 (v) : ∇v = I in (−∞,−M) ,∇v = R in (M,+∞)

}
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Passage to the limit as ε → 0+

In the next slides we consider the lattice with dislocations
(similar results hold for the defect-free one).

1 Compactness: We rescale to a parallelogram independent of ε

Compactness: and find that (rescaled) deformations with

Compactness: equibounded energy converge to “short maps”

Compactness: {u depending only on x1 , |∂1u| ≤ 1} .

2 Γ- lim inf : After passing to a dilated lattice, we bound the functional

Γ- lim inf : by the minimum cost of transitions between equilibria.

3 Γ- lim sup: That minimum cost is the Γ-limit. This is based

Γ- lim sup: on constructing transitions between equilibria.

A
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Rescaling of the domain

Assume Fdisl
ε

(uε) ≤ C .

We rescale the domain

to a lattice with spacing

independent of ε ,

setting vε(x) := ε
−1uε(εx) ε λε

kε

2L

1 λ

k

2L/ε
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Rescaling of the domain

Next we extend the rescaled domain to an infinite strip.

We extend the deformation vε to v̄ε defined on the infinite strip

1 λ

2L/ε

Fdisl
1,∞(v̄ε) := 1

2
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∣

∣
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∣

∣

∣
− 1

)2
+

1
2

∑

right

(
∣

∣

∣
v̄ε(x)− v̄ε(y)

∣

∣

∣
− λ

)2
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Rescaling of the domain

Next we extend the rescaled domain to an infinite strip.

We extend the deformation vε to v̄ε defined on the infinite strip in this way:

Employing the rigidity estimate we find two regions S1 and S2 such that

∇vε ∼ I in S1 and ∇vε ∼ R ∈ SO(2) in S2 .

Finally, v̄ε := I on the left, v̄ε := vε+c1 in between, v̄ε := R+c2 on the right.

1 λ

2L/ε

S1 S2

Thanks to the rigidity estimate, Fdisl
1,∞(v̄ε) . Fdisl

ε
(uε) .
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Limit functional

We have reduced to deformations in equilibrium far from the interface:

∇v = I in (−∞,−M) , ∇v = R in (M,+∞)
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Limit functional

So we consider the minimum cost of transitions between equilibria:

γ
disl(k) := inf

v ,M

{

Fdisl
1,∞(v) : ∇v = I in (−∞,−M) , ∇v = R in (M,+∞)

}
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Limit functional

So we consider the minimum cost of transitions between equilibria:

γ
disl(k) := inf

v ,M

{

Fdisl
1,∞(v) : ∇v = I in (−∞,−M) , ∇v = R in (M,+∞)

}

γ
df(k) := inf

v ,M

{

Fdf
1,∞(v) : ∇v = I in (−∞,−M) ,∇v = λR in (M,+∞)

}

They are independent of R !
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Limit functional

So we consider the minimum cost of transitions between equilibria:

γ
disl(k) := inf

v ,M

{

Fdisl
1,∞(v) : ∇v = I in (−∞,−M) , ∇v = R in (M,+∞)

}

γ
df(k) := inf

v ,M

{

Fdf
1,∞(v) : ∇v = I in (−∞,−M) ,∇v = λR in (M,+∞)

}

They are independent of R !

Γ-convergence result (L.-Palombaro-Schlömerkemper, Comm. Math. Sci. 201?)

The (rescaled versions of the) functionals Fdisl
ε

, Fdf
ε

Γ-converge w*-W 1,∞

to functionals of u : [−L, L] → R
2 (reduction to 1d ):

Fdisl(u) =

{

γ
disl(k) if |∂1u| ≤ 1

+∞ otherwise

Fdf(u) =

{

γ
df(k) if |∂1u| ≤ 1 (on the left) and |∂1u| ≤ λ (on the right)

+∞ otherwise
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Comparison between defect-free and dislocations

Now we let the number of lines grow on both sides (k ≫ 1).

We study the growth of γdf and γ
disl in dependence on the number of lines:

equil.
equil.

equil.

∼ k2 strained bonds ∼ k strained bonds

Defect-free: rescaling argument + rigidity =⇒ C1k2 ≤ γ
df(k) ≤ C2k2

Dislocations: comparing with the identical deformation, γdisl(k) ≤ Ck

This proves that dislocations are favoured for sufficiently large thickness.
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The role of non-interpenetration

A deformation that violates the non-interpenetration condition:
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For such a deformation the total interaction energy grows linearly in k
even if the lattice is defect-free!
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The role of non-interpenetration

A deformation that violates the non-interpenetration condition:
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For such a deformation the total interaction energy grows linearly in k
even if the lattice is defect-free!
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Three-dimensional model

Face-centred cubic lattice

Unit cell and tessellation
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Conclusion

• We study a nanowire made of two phases, via dimension reduction

and passage from discrete to continuum.

• Nearest-neighbour interactions with non-interpenetration constraint.

• By Γ-convergence we characterize the minimal energy needed

to compensate the lattice mismatch.

• We compare a defect-free lattice and a lattice with dislocations.

• The cost of the defect-free model is quadratic w. r. to the number of lines,

while the cost of the model with dislocations is linear.

• This shows that dislocations are favoured if the thickness is large enough.
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