Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Representation results for integral and supremal functionals

Elvira Zappale

Università di Salerno

Trends in Nonlinear Analysis 2014, IST, Lisbon, July, 31, 2014

Topics

Integral functionals

Introduction

Homogenization Integral Representation Dimensional Reduction

related to imaging, elasticity and optimal design problems. Supremal functionals

 $\left\{ \begin{array}{l} {\rm Dimensional\ reduction}\\ {L^p\ {\rm approximation}}\\ {\rm Minimum\ problems\ without\ } convexity. \end{array} \right.$

The results have been obtained in collaboration with Graça Carita (University of Evora), Ana Margarida Ribeiro (New University of Lisbon).

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

minimizers

Common feature of the integral problems consists of minimizing a functional

 $\mathcal{F}(\cdot, \cdot)$ with dependence on two unrelated fields.

1 $\mathcal{F}(u, v) = \|Du\|(\Omega) + \frac{1}{2\lambda}\|\varphi - u - v\|_{L^2}^2$: φ : given image, *u*, *v*: cartoon and noise.

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

Common feature of the integral problems consists of minimizing a functional

 $\mathcal{F}(\cdot, \cdot)$ with dependence on two unrelated fields. Examples:

1
$$\mathcal{F}(u, v) = \|Du\|(\Omega) + \frac{1}{2\lambda}\|\varphi - u - v\|_{L^2}^2$$
: φ : given image,
u, *v*: cartoon and noise.

2
$$\mathcal{F}(u, v) = \int_{\Omega} f\left(\frac{x}{\varepsilon}, v, \nabla u\right) dx \ u, v$$
: displacement and chemical composition.

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

minimizers Vectorial case Common feature of the integral problems consists of minimizing a functional

 $\mathcal{F}(\cdot, \cdot)$ with dependence on two unrelated fields. Examples:

1
$$\mathcal{F}(u, v) = \|Du\|(\Omega) + \frac{1}{2\lambda}\|\varphi - u - v\|_{L^2}^2$$
: φ : given image,
 u, v : cartoon and noise.

2
$$\mathcal{F}(u, v) = \int_{\Omega} f\left(\frac{x}{\varepsilon}, v, \nabla u\right) dx \ u, v$$
: displacement and chemical composition.

3
$$\mathcal{F}(\chi, \nu) = \int_{\Omega} (\chi W_1(\nabla \nu) + (1 - \chi) W_2(\nabla \nu)) dx + |D\chi|(\Omega).$$

 Ω : design region, ν : displacement, χ : set to fill.

Focus on 3: Optimal design problems

Optimal Design

Introduction

Optimal Design

Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

Absolute minimizers

Main contributions (not complete list)

- Kohn- Strang
- Ambrosio -Buttazzo with perimeter penalization
- Kohn- Li with perimeter penalization
- Bouchitté- Fragalá-Seppecher thin structures and linear elasticity setting)
- Fonseca- Franfort dimensional reduction with no perimeter penalization
- Braides-Fonseca-Francfort- dimensional reduction with no perimeter penalization

- Larsen
- Carozza-Fonseca-Passarelli di Napoli -regularity

Optimal Design Problem

3. Let $F : BV(\Omega; \{0,1\}) \times W^{1,p}(\Omega; \mathbb{R}^d) \to [0,+\infty], \ p \ge 1$

Introduction

Optimal Design

Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

$$F(\chi_E, v) := \int_{\Omega} (\chi_E W_1 + (1 - \chi_E) W_2) (\nabla v) dx \quad (1)$$
$$- \int_{\Omega} f \cdot v \, dx + \operatorname{Per}(\mathbf{E}; \Omega)$$

$$\lambda := \frac{1}{|\Omega|} \int_{\Omega} \chi_E(x) \, dx \rightsquigarrow \quad \text{vol. frac.}$$

 $E \subset \Omega$ has finite perimeter, $f \in L^{p'}(\Omega)$. $W_i : \mathbb{R}^{d \times N} \to \mathbb{R}$ continuous satisfying

 $\alpha |\xi|^{p} - \gamma \leq W_{i}(\xi) \leq \beta (1 + |\xi|^{p}), \qquad \forall \xi \in \mathbb{R}^{d \times N}, \ i = 1, 2,$ (2)
for some $\alpha, \ \beta, \gamma > 0.$

Optimal Design

Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

$$\mathcal{C}(\chi_E) = -\inf_{v \in W^{1,p}} \left\{ \int_{\Omega} (\chi_E W_1 + (1-\chi_E)W_2) (\nabla v) dx - \int_{\Omega} f \cdot v \, dx + \operatorname{Per}(E;\Omega) \right\}$$

The best optimal design would be

Optimal Design Problem

$$-\sup_{\chi}\left\{-\mathcal{C}\left(\chi\right):\chi\in \textit{BV}\left(\Omega;\left\{0,1\right\}\right), \ \frac{1}{\left|\Omega\right|}\int_{\Omega}\chi \ \textit{d}x=\lambda\right\}$$

Problem

$$\inf_{(\chi,\nu)} \left\{ F(\chi,\nu) : \nu = 0 \text{ on } \partial\Omega, \ \frac{1}{|\Omega|} \int_{\Omega} \chi \ dx = \lambda, \\ \nu \in W^{1,p}(\Omega; \mathbb{R}^d), \ \chi \in BV(\Omega; \{0,1\}) \right\}$$

Result: superlinear case

Theorem (p > 1)

Introduction

Optimal Design Superlinear case

Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute $\Omega \subset \mathbb{R}^N$ bounded, Lipschitz, open and $W_i : \mathbb{R}^{d \times N} \to [0, +\infty)$, i = 1, 2, continuous with growth (2). If \mathcal{F} denotes the relaxation ($L^1 \times L^1$) of F in (1) then

$$\mathcal{F}(\chi, \mathbf{v}) = J_{\mathbf{p}}(\chi, \mathbf{v})$$

for every $(\chi, \mathbf{v}) \in BV(\Omega; \{0, 1\}) imes W^{1, p}(\Omega; \mathbb{R}^d).$

 $J_{\rho}: BV(\Omega; \{0,1\}) imes W^{1,\rho}(\Omega; \mathbb{R}^d) \to [0,+\infty[$ is defined as

$$J_p(\chi, v) := \int_{\Omega} QV(\chi, \nabla v) dx - \int_{\Omega} f \cdot v dx + |D\chi|(\Omega).$$

Comments

Introduction

- Optimal Design Superlinear case
- Linear case Generalizations.

Supremal Functionals

- Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meanineful?
- Uniqueness -Non existence Absolute minimizers

 $V(e,\xi) := eW_1(\xi) + (1-e)W_2(\xi)$ (3)

- *QV* stands for the quasiconvexification of *V* in the second variable.
- The proof is direct via double inequality. It just requires *p*-equi-integrability results for the upper bound.
- The result is available also in the 3D 2D setting.
- Other penalizations terms can be taken into account.

Comments

Introduction

- Optimal Design Superlinear case
- Linear case Generalizations.

Supremal Functionals

- Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?
- Uniqueness -Non existence Absolute minimizers Vectorial case

٩

$$V(e,\xi) := eW_1(\xi) + (1-e)W_2(\xi)$$
(3)

- *QV* stands for the quasiconvexification of *V* in the second variable.
- The proof is direct via double inequality. It just requires *p*-equi-integrability results for the upper bound.
- The result is available also in the 3D 2D setting.
- Other penalizations terms can be taken into account.

p > 1: no interaction!

Linear case for optimal design

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence abcolute

minimizers Vectorial case

Case p = 1: (2) reads as

 $\alpha|\xi|-\gamma \leq W_i(\xi) \leq \beta(|\xi|+1) \quad i=1,2.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Linear case for optimal design

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Case p = 1: (2) reads as

 $\alpha |\xi| - \gamma \le W_i(\xi) \le \beta(|\xi| + 1) \quad i = 1, 2.$

 Relaxation *F* of *F* in (1) → requires a representation on BV(Ω; {0,1}) × BV(Ω; ℝ^d).

• Question: Which interaction between χ and v?

Linear case for optimal design

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

Case p = 1: (2) reads as

 $lpha|\xi|-\gamma \leq W_i(\xi) \leq eta(|\xi|+1) \quad i=1,2.$

• Relaxation \mathcal{F} of F in (1) \rightsquigarrow requires a representation on $BV(\Omega; \{0,1\}) \times BV(\Omega; \mathbb{R}^d)$.

- Question: Which interaction between χ and v?
- Answer: Just in the 'jump set'.

Integral representation for \mathcal{F} , p=1

Theorem

Optimal Design Superlinear cas

Linear case Generalization

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

Absolute minimizers Vectorial case $\Omega \subset \mathbb{R}^{N}$, $W_{i} : \mathbb{R}^{d \times N} \rightarrow [0, +\infty)$, i = 1, 2, continuous with linear growth. Then, for every $(\chi, v) \in BV(\Omega; \{0, 1\}) \times BV(\Omega; \mathbb{R}^{d})$,

$$\mathcal{F}(\chi, \mathbf{v}) = J_1(\chi, \mathbf{v}),$$

where

$$J_{1}(\chi, \mathbf{v}) = \int_{\Omega} QV(\chi, \nabla \mathbf{v}) d\mathbf{x} + \int_{\Omega} QV^{\infty} \left(\chi, \frac{dD^{c}\mathbf{v}}{d |D^{c}\mathbf{v}|}\right) d |D^{c}\mathbf{v}|$$
$$+ \int_{J_{(\chi, \mathbf{v})}} K_{2} \left(\chi^{+}, \chi^{-}, \mathbf{v}^{+}, \mathbf{v}^{-}, \nu\right) d\mathcal{H}^{N-1}.$$

Integral representation for \mathcal{F} , p=1

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

minimizers Vectorial case

Recall that V is as in (3) and QV is its quasiconvexification

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Integral representation for \mathcal{F} , p=1

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

Minimizers

Recall that V is as in (3) and QV is its quasiconvexification and QV^{∞} is the recession function of QV, namely,

$$QV^{\infty}(e,\xi) := \lim_{t\to\infty} \frac{QV(e,t\xi)}{t},$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Relaxation: integral representation for \mathcal{F} , p = 1.

The interaction is described through the following density

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

$$K_{2}(a, b, c, d, \nu) := \inf \left\{ \int_{Q_{\nu}} QV^{\infty}(\chi(x), \nabla v(x)) dx + |D\chi|(Q_{\nu}) + (\chi, v) \in \mathcal{A}_{2}(a, b, c, d, \nu) \right\},$$
(4)

where

$$\begin{aligned} \mathcal{A}_2 \left(a, b, c, d, \nu \right) &:= \left\{ (\chi, \nu) \in BV \left(Q_{\nu}; \{0, 1\} \right) \times W^{1, 1} \left(Q_{\nu}; \mathbb{R}^d \right) : \\ (\chi, \nu) &= (a, c) \text{ if } y \cdot \nu = \frac{1}{2}, \ (\chi, \nu) = (b, d) \text{ if } y \cdot \nu = -\frac{1}{2}, \\ (\chi, \nu) &1 - \text{periodic in } \nu_1, \dots, \nu_{N-1} \text{directions} \right\}, \end{aligned}$$

for $(a, b, c, d, \nu) \in \{0, 1\} \times \{0, 1\} \times \mathbb{R}^d \times \mathbb{R}^d \times S^{N-1}$, with Q_{ν} the unit cube, centered at the origin, with axes parallel to $\{\nu_1, \nu_2, \dots, \nu_{N-1}, \nu\}$.

Relaxation: representation for \mathcal{F} , p = 1.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers • The surface energy can be specialized as follows

$$\int_{J_{(\chi,\nu)}} K_2(\chi^+,\chi^-,\nu^+,\nu^-,\nu_{(\chi,\nu)}) d\mathcal{H}^{N-1} = \int_{J_{\nu}\setminus J_{\chi}} QV^{\infty}(\chi,(\nu^+-\nu^-)\otimes\nu_{\nu}) d\mathcal{H}^{N-1} + |D\chi|(\Omega\cap(J_{\chi}\setminus J_{\nu}))$$

$$+\int_{J_{\chi}\cap J_{\nu}}K_{2}(\chi^{+},\chi^{-},\nu^{+},\nu^{-},\nu_{(\chi,\nu)})d\mathcal{H}^{N-1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Representation for $\overline{\mathcal{F}}$, p = 1: comments.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Non existence Absolute minimizers Key idea: to consider the couple (χ, ν) as a unique BV-field U, keeping in mind that ∇U = (0, ∇ν) and D^cU = (0, D^cν)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Representation for \mathcal{F} , p = 1: comments.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

Vectorial case

- Key idea: to consider the couple (χ, ν) as a unique BV-field U, keeping in mind that ∇U = (0, ∇ν) and D^cU = (0, D^cv)
- Existing results: Barroso-Bouchitté-Buttazzo-Fonseca ARMA (1996): Relaxation in BV* of $u \in SBV \rightarrow \int_{\Omega} f(x, \nabla u) dx + \int_{J_u} g(x, [u](x), \nu_u) d\mathcal{H}^{N-1}$. Bouchitté -Fonseca- Mascarenhas, Global Method ARMA (1998).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Neccessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

• Blow-up!

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

- Blow-up!
- Lower bound inequality:

$$\mathcal{F}(\chi, \mathbf{v}) \geq \lim_{\varepsilon \to 0} \int_{\Omega} \left(\chi_{\varepsilon} W_1(\nabla \mathbf{v}_{\varepsilon}) + (1 - \chi_{\varepsilon}) W_2(\nabla \mathbf{v}_{\varepsilon}) \right) d\mathbf{x}.$$
(5)

イロト 不得 トイヨト イヨト

-

"Bulk" and "Cantor" parts: it 's enough.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

- Blow-up!
- Lower bound inequality:

$$\mathcal{F}(\chi, \mathbf{v}) \geq \lim_{\varepsilon \to 0} \int_{\Omega} \left(\chi_{\varepsilon} W_1(\nabla \mathbf{v}_{\varepsilon}) + (1 - \chi_{\varepsilon}) W_2(\nabla \mathbf{v}_{\varepsilon}) \right) d\mathbf{x}.$$
(5)

"Bulk" and "Cantor" parts: it 's enough.

• But $\mathcal{F}(\chi, v) > \lim_{\varepsilon \to 0} \int_{\Omega} (\chi_{\varepsilon} W_1(\nabla v_{\varepsilon}) + (1 - \chi_{\varepsilon}) W_2(\nabla v_{\varepsilon})) dx.$ need of 'extending-gluing' Fonseca-Muller ARMA (1993) and Ambrosio-Braides JMPA (1990).

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

• Upper bound inequality: \mathcal{F} is a measure absolutely continuous with respect to $\mathcal{L}^N + |D\chi| + |D\nu|$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

- Upper bound inequality: \mathcal{F} is a measure absolutely continuous with respect to $\mathcal{L}^N + |D\chi| + |D\nu|$.
- "Bulk" and "Cantor" parts :via "Global Method for Relaxation" BFM (1998).

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

- Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers
- Vectorial case

- Upper bound inequality: \mathcal{F} is a measure absolutely continuous with respect to $\mathcal{L}^N + |D\chi| + |D\nu|$.
- "Bulk" and "Cantor" parts :via "Global Method for Relaxation" BFM (1998).

• "Jump" term requires a direct estimate.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

• Consider

$$\begin{split} \inf \left\{ \underbrace{\lim_{\varepsilon \to 0}}_{u_{\varepsilon} \to u} \left(\int_{\Omega} \left(u_{\varepsilon} W_{1} + (1 - u_{\varepsilon}) W_{2} \right) (\nabla v_{\varepsilon}) \, dx + \int_{\Omega} |\nabla v_{\varepsilon}| \, dx \right) : \left\{ (u_{\varepsilon}, v_{\varepsilon}) \right\} \subset W^{1,1} \left(\Omega; [0, 1] \right) \times W^{1,1}(\Omega; \mathbb{R}^{d}) \\ u_{\varepsilon} \to u \text{ in } L^{1} \left(\Omega; [0, 1] \right) \\ v_{\varepsilon} \to v \text{ in } L^{1} \left(\Omega; \mathbb{R}^{d} \right), \end{array} \right\}, \end{split}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Neccessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

Consider

$$\begin{split} \inf & \left\{ \underbrace{\lim_{\varepsilon \to 0}}_{\varepsilon \to 0} \left(\int_{\Omega} \left(u_{\varepsilon} W_1 + (1 - u_{\varepsilon}) W_2 \right) (\nabla v_{\varepsilon}) \, dx + \\ & \int_{\Omega} |\nabla v_{\varepsilon}| \, dx \right) : \left\{ (u_{\varepsilon}, v_{\varepsilon}) \right\} \subset W^{1,1} \left(\Omega; [0, 1] \right) \times W^{1,1}(\Omega; \mathbb{R}^d) \\ & u_{\varepsilon} \to u \text{ in } L^1 \left(\Omega; [0, 1] \right) \\ & v_{\varepsilon} \to v \text{ in } L^1 \left(\Omega; \mathbb{R}^d \right), \end{split} \right\}, \end{split}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Particular case in Fonseca-Muller ARMA (1993).

• Recall that the jump term in FM (1993) is given by :

$$\begin{aligned} & \mathcal{K}(a,b,c,d,\nu) := \inf \left\{ \int_{Q_{\nu}} \left(QV^{\infty}(u,\nabla v) + |\nabla u| \right) dx : \\ & (u,v) \in \mathcal{A}(a,b,c,d,\nu) \right\}, \end{aligned}$$

where V is as in (3) and

$$\begin{aligned} \mathcal{A}(a, b, c, d, \nu) &:= \left\{ (u, v) \in W^{1,1} \left(Q_{\nu}; \mathbb{R}^{1+d} \right) : \\ (u, v) &= (a, c) \text{ if } y \cdot \nu = \frac{1}{2}, \ (u, v) = (b, d) \text{ if } y \cdot \nu = -\frac{1}{2}, \\ (u, v) \text{ are } 1 - \text{periodic in } \nu_1, \dots, \nu_{N-1} \text{directions} \right\}, \end{aligned}$$

 $(a, b, c, d, \nu) \in \{0, 1\} \times \{0, 1\} \times \mathbb{R}^d \times \mathbb{R}^d \times S^{N-1}.$

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

Vectorial case

• Recall that the jump term in FM (1993) is given by :

$$\mathcal{K}(a,b,c,d,
u) := \inf \left\{ \int_{Q_{
u}} (QV^{\infty}(u,
abla v) + |
abla u|) dx : (u,v) \in \mathcal{A}(a,b,c,d,
u)
ight\},$$

where V is as in (3) and

$$\begin{aligned} &\mathcal{A}(a, b, c, d, \nu) := \left\{ (u, v) \in W^{1,1} \left(Q_{\nu}; \mathbb{R}^{1+d} \right) : \\ &(u, v) = (a, c) \text{ if } y \cdot \nu = \frac{1}{2}, \ (u, v) = (b, d) \text{ if } y \cdot \nu = -\frac{1}{2}, \\ &(u, v) \text{ are } 1 - \text{periodic in } \nu_1, \dots, \nu_{N-1} \text{directions} \right\}, \end{aligned}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$(a, b, c, d, \nu) \in \{0, 1\} \times \{0, 1\} \times \mathbb{R}^d \times \mathbb{R}^d \times S^{N-1}.$$

• Easy to see that $K \leq K_2$. What about $K_2 \leq K$?

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

minimizers

Optimal design: generalizations

• Other growth assumptions on W_1 and W_2 .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Optimal design: generalizations

- Other growth assumptions on W_1 and W_2 .
- Replace perimeters by piecewise affine functions.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Introduction
- Optimal Design Superlinear case Linear case Generalizations.
- Supremal Functionals
- Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions
- Is the theorem meaningful?
- Non existence Absolute
- Vectorial case

Optimal design: generalizations

- Other growth assumptions on W_1 and W_2 .
- Replace perimeters by piecewise affine functions.
- Relaxation in $SBV_0(\Omega; \mathbb{R}^m) \times W^{1,1}(\Omega; \mathbb{R}^d)$

 $\mathcal{F}(u,v) =$

$$\inf\left\{\underbrace{\lim_{\varepsilon\to 0}}{\left(\int_{\Omega}f\left(u_{\varepsilon},\nabla v_{\varepsilon}\right)dx+\int_{J_{u_{\varepsilon}}}g\left(u_{\varepsilon}^{+},u_{\varepsilon}^{-},\nu_{u_{\varepsilon}}\right)d\mathcal{H}^{N-1}\right)\right\}$$

$$\begin{split} \{(u_{\varepsilon}, v_{\varepsilon})\} &\subset SBV_0\left(\Omega; \mathbb{R}^m\right) \times W^{1,1}\left(\Omega; \mathbb{R}^d\right), \\ u_{\varepsilon} &\to u \text{ in } L^1\left(\Omega; \mathbb{R}^m\right) \\ v_{\varepsilon} &\to v \text{ in } L^1\left(\Omega; \mathbb{R}^d\right) \end{split}$$

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

minimizers

Vectorial case

Optimal design: generalizations.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

Absolute minimizers

Our result says that

$$\mathcal{F}(u,v) = \int_{\Omega} Qf(u,\nabla v) dx + \int_{\Omega} Qf^{\infty}\left(u, \frac{dD^{c}v}{d|D^{c}v|}\right) d|D^{c}v| + \int_{\int_{(u,v)} \cap A} K_{3}\left(u^{+}, u^{-}, v^{+}, v^{-}, \nu\right) d\mathcal{H}^{N-1},$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

for every $(u, v) \in SBV_0(\Omega; \mathbb{R}^m) \times BV(\Omega; \mathbb{R}^d)$.

Optimal design: generalizations.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Non existence Absolute minimizers

$$K_3(a,b,c,d,\nu) :=$$

$$\inf\left\{\int_{Q_{\nu}}Qf^{\infty}(u,\nabla v)dx+\int_{J_{u}\cap Q_{\nu}}g(u^{+},u^{-},\nu)d\mathcal{H}^{N-1}:\right.$$

$$(u,v) \in \mathcal{A}_3(a,b,c,d,\nu) \Big\}$$

where

$$\begin{aligned} \mathcal{A}_{3}(a, b, c, d, \nu) &:= \\ \left\{ (u, v) \in (SBV_{0}(Q_{\nu}; \mathbb{R}^{m}) \cap L^{\infty}(Q_{\nu}; \mathbb{R}^{m})) \times W^{1,1}(Q_{\nu}; \mathbb{R}^{d}) : \\ (u, v) &= (a, c) \text{ if } y \cdot \nu = -\frac{1}{2}, (u, v) = (b, d) \text{ if } y \cdot \nu = \frac{1}{2}, \\ (u, v) \text{ are } 1 - \text{periodic in } \nu_{1}, \dots \nu_{N-1} \text{directions} \right\}, \end{aligned}$$

Optimal design: generalizations.

• Comparison: $K_3 \leq K_2$. We suspect $K_3 < K_2$!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Optimal design: generalizations.

- Comparison: $K_3 \leq K_2$. We suspect $K_3 < K_2$!
- More explicit formulas for the surface term K_3 .

$$\int_{J_{(u,v)}} K_{3}(u^{+}, u^{-}, v^{+}, v^{-}, \nu_{(u,v)}) d\mathcal{H}^{N-1} = \int_{J_{v} \setminus J_{v}} Qf^{\infty}(u, (v^{+} - v^{-}) \otimes \nu_{v}) d\mathcal{H}^{N-1} + \int_{J_{u} \setminus J_{v}} \mathcal{R}g(u^{+}, u^{-}, \nu_{u}) d\mathcal{H}^{N-1} + \int_{J_{u} \cap J_{v}} K_{3}(u^{+}, u^{-}, v^{+}, v^{-}, \nu_{(u,v)}) d\mathcal{H}^{N-1}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\mathcal{R}g$ is the BV-elliptic envelope of g!

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

Absolute minimizers

Supremal functionals

Aronsson in

- Minimization Problems for the Functional sup_x F(x, f(x), f'(x)). Ark. Mat. 6 (1965), 33-53,
 - Min. Pb.... Ark. Mat. 6 (1966), 409- 431,
 - Min. Pb... Ark. Mat.7 (1969), 509- 512, and in
 - Extension of Functions satisfying Lipschitz conditions. Ark. Mat. **6** (1967), 551- 561

developed the theory in connection with infinity laplacian namely with

 $egin{aligned} \Delta_{\infty} u &= 0 \mbox{ in } \Omega \subset \mathbb{R}^N, \\ \mbox{equivalently } &<
abla u, D^2 u
abla u >= 0, \end{aligned}$

$$(i.e.u_{x_i}u_{x_j}u_{x_ix_j}=0,)$$

with $u: \Omega \subset \mathbb{R}^N \to \mathbb{R}$, u smooth enough, $a \in \mathbb{R}$ is $a \in \mathbb{R}$.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

Supremal functionals

Namely he considered the L^{∞} -variational problem

 $\min I_{\infty}(u) = \min \operatorname{ess\,sup}_{\Omega} |\nabla u|.$

for which

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Neccessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case represents the Euler-Lagrange (now 'Euler-Aronsson') equation. Barron et al. (20-25 years later) addressed the theory, i.e.

 $\Delta \propto u = 0$

 $\min_{u \in W^{1,\infty}(\Omega)} \operatorname{ess\,sup}_{x \in \Omega} f(x, u(x), \nabla u(x))$

starting the study of $\operatorname{ess\,sup}_{x\in\Omega} f(x, u(x), \nabla u(x))$ making a parallel with the integral setting.

Minimum problems

Why?

- Newton's law in ℝ. Pb: Want to minimize the maximum pointwise force of an object moving :min_u ||ν(x)u''(x)||_{L∞}, ν(x) is the proportional factor between force and acceleration and it may be media dependent and discontinuous...
- Chebychev approximation theory,
- Design of beam subjected to loading and bending needs to minimize L[∞] norm of second derivatives of deflection.

• Minimal Lipschitz extension.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

Minimum problems

Why?

- Newton's law in ℝ. Pb: Want to minimize the maximum pointwise force of an object moving :min_u ||ν(x)u''(x)||_{L∞}, ν(x) is the proportional factor between force and acceleration and it may be media dependent and discontinuous...
- Chebychev approximation theory,
- Design of beam subjected to loading and bending needs to minimize L[∞] norm of second derivatives of deflection.
- Minimal Lipschitz extension.

Take $u_0 \in W^{1,\infty}(\Omega)$ (f = | |) and consider

$$\inf\left\{ \operatorname{ess\,sup}_{x\in\Omega} f(\nabla u(x)) : u \in u_0 + W_0^{1,\infty}(\Omega) \right\}, \qquad (\mathsf{P})$$

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Mon existence Mosolute minimizers

Supremal functionals - main contributions:

ntroduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

- Lower semicontinuity: by Barron, Jensen, Prinari,...
- Control theory: Barron,...
- PDE's applications: Barron,...
- L^p-approximation / Γ-convergence: De Pascale, Prinari, Garroni, Ponsiglione,..
- Applications: Nesi, Bocea, Garroni, Prinari,...
- Supremal representation: Barron, Cardaliaguet, Prinari,...
- Homogenization: Briani, Garroni, Prinari,...
- Dimension reduction: Prinari, Babadjian, Z.
- Absolute minimizers: Champion, De Pascale, Crandall, Jutineen, Jensen, Barron,...
- \mathcal{A}_∞ -quasiconvexity: Bocea, Ansini, Prinari,...
- BV-setting: Gori, De Cicco, Maggi, Braides,...

Supremal functionals: basic facts

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

Vectorial case

Focus on $F(u) = \operatorname{ess sup}_{x \in \Omega} f(\nabla u(x)), \ u \in W^{1,\infty}(\Omega).$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Supremal functionals: basic facts

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

Focus on
$$F(u) = \operatorname{ess sup}_{x \in \Omega} f(\nabla u(x)), \quad u \in W^{1,\infty}(\Omega).$$

Barron and Liu in Appl. Math. Optim. '97 rediscovered the notion of 'level convexity', in order to characterize lower semicontinuity for F (cf. also Acerbi-Buttazzo-Prinari)

Theorem - Necessity If F(u) is sequentially weak* lower semicontinuous, then f is lower semicontinuous and level convex.

Supremal functionals: basic facts

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

Focus on
$$F(u) = \operatorname{ess sup}_{x \in \Omega} f(\nabla u(x)), \quad u \in W^{1,\infty}(\Omega).$$

Barron and Liu in Appl. Math. Optim. '97 rediscovered the notion of 'level convexity', in order to characterize lower semicontinuity for F (cf. also Acerbi-Buttazzo-Prinari)

Theorem - Necessity If F(u) is sequentially weak* lower semicontinuous, then f is lower semicontinuous and level convex.

Theorem - Sufficiency (Barron-Jensen-Wang '99 Ann. Poinc.) If $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ level convex and lower semicontinuous then F(u) is sequentially weakly* lower semicontinuous.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case **Definition** $f : \mathbb{R}^N \to \mathbb{R}$ is 'level convex' if the sublevels are convex, i.e. $\forall t \in \mathbb{R}$

$$L_t(f) := \{\xi \in \mathbb{R}^N : f(\xi) \le t\}$$
 is convex.

In other words for every $\lambda \in [0, 1], \xi_1, \xi_2 \in \mathbb{R}^N$

$$f(\lambda\xi_1+(1-\lambda)\xi_2)\leq \max\{f(\xi_1),f(\xi_2)\}$$

or Supremal Jensen's ineq.

$$f\left(\int_{\Omega} v(x)d\mu(x)\right) \leq \mu - \mathrm{ess}\sup_{x\in\Omega}(f(v(x))),$$

with μ probability measure, $v \in L^1_{\mu}(\Omega)$, Ω bounded domain.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity

representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

Convexity implies *level convexity*. Consider $f : x \in (0, 1) \rightarrow \sqrt{x}$ to see that *level convexity* does not imply convexity.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case Convexity implies *level convexity*. Consider $f : x \in (0, 1) \rightarrow \sqrt{x}$ to see that *level convexity* does not imply convexity.

Level convexity does not imply lower semicontinuity, i.e. level sets can be convex but not closed. Take in \mathbb{R} , $f := \chi_{\mathbb{R} \setminus \{0,1\}}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Neccessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case Convexity implies *level convexity*. Consider $f : x \in (0, 1) \rightarrow \sqrt{x}$ to see that *level convexity* does not imply convexity.

Level convexity does not imply lower semicontinuity, i.e. level sets can be convex but not closed. Take in \mathbb{R} , $f := \chi_{\mathbb{R} \setminus \{0,1\}}$.

Lower semicontinuous envelopes of level convex functions $f : \mathbb{R}^n \to [-\infty, +\infty]$ are level convex.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case Convexity implies *level convexity*. Consider $f : x \in (0, 1) \rightarrow \sqrt{x}$ to see that *level convexity* does not imply convexity.

Level convexity does not imply lower semicontinuity, i.e. level sets can be convex but not closed. Take in \mathbb{R} , $f := \chi_{\mathbb{R} \setminus \{0,1\}}$.

Lower semicontinuous envelopes of level convex functions $f : \mathbb{R}^n \to [-\infty, +\infty]$ are level convex.

Level convex function $f : \mathbb{R}^n$, n > 1, may not be Borel measurable: i.e. $f := \chi_{\mathbb{R}^n \setminus C}$, C convex but not Borel measurable.

Relaxation Theorem

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Relaxation and representation

Number Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

Theorem

 $\Omega \subset \mathbb{R}^n$ bn'd open set, Lipschitz bd. and $f : \mathbb{R}^n \to \mathbb{R}$ continuous (and coercive). If $F(u) := ess sup_{x \in \Omega} f(\nabla u(x))$ for $u \in u_0 + W_0^{1,\infty}(\Omega)$, and \overline{F} is its relaxed functional, then

$$\overline{F}(u) = \operatorname{ess\,sup}_{x \in \Omega} f^{\operatorname{lslc}}(\nabla u(x)), \ \forall \ u \in u_0 + W^{1,\infty}_0(\Omega)$$
(7)

where $f^{\rm lslc}$ is the lower semicontinuous and level convex envelope of $f, \label{eq:lslc}$

 $f^{\text{lslc}}(\xi) = \sup\{g(\xi) : g \le f, g \text{ lsc and level convex}\}.$ (8)

Representation for f^{lslc}

Many 'equivalent' representations are available for f^{lslc} . Caratheodory's formula (f lsc and $\lim_{|\xi| \to +\infty} \frac{f(\xi)}{|\xi|} = +\infty$):

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Relaxation and representation

Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

minimizers

Vectorial case

$$f^{ ext{lslc}}(\xi):=\min\left\{\max_{1\leq i\leq n+1}f(\xi_i):\xi=\sum_{i=1}^{n+1}\lambda_i\xi_i,\lambda_i\geq 0,\sum_{i=1}^{n+1}\lambda_i=1
ight\}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Representation for f^{lslc}

Many 'equivalent' representations are available for f^{lslc} . Caratheodory's formula (f lsc and $\lim_{|\xi| \to +\infty} \frac{f(\xi)}{|\xi|} = +\infty$):

$$f^{\mathrm{lslc}}(\xi) := \min\left\{\max_{1 \leq i \leq n+1} f(\xi_i) : \xi = \sum_{i=1}^{n+1} \lambda_i \xi_i, \lambda_i \geq 0, \sum_{i=1}^{n+1} \lambda_i = 1\right\}$$

In particular if f is continuous and $\lim_{|\xi| \to +\infty} f(\xi) = +\infty$,

$$f^{ ext{lslc}}(\xi) = \sup\{g(\xi), g \text{ level convex }, g \leq f\} =: f^{ ext{lc}}(\xi).$$

In terms of duality: define $f^* : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$, and $f^{**} : \mathbb{R}^n \to \mathbb{R}$ as

$$f^*(p,\gamma) := \sup\{\min\{\langle p, x \rangle, \gamma\} - f(x) : x \in \mathbb{R}^n\},\$$

$$f^{**}(x) := \sup\{\min\{\langle p, x \rangle, \gamma\} - f^*(p,\gamma) : p \in \mathbb{R}^n, \gamma \in \mathbb{R}\}.$$

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Relaxation and representation

Nonexistence Absolute minimizers

Representation for $f^{ m lslc}$

Theorem

If $f : \mathbb{R}^n \to [-\infty, \infty]$ is bounded from below, then

$$f^{**}(\xi) = f^{\text{lslc}}(\xi)$$
 for every $\xi \in \mathbb{R}^n$. (9)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ideas about proof: Ekeland & Temam, i.e. Separation theorems (c.f. Martinez-Legaz '88 and Barron & Liu '97).

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Relaxation and representation

Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

minimizers

Representation for f^{lslc}

Theorem

If $f : \mathbb{R}^n \to [-\infty, \infty]$ is bounded from below, then

$$f^{**}(\xi) = f^{\text{lslc}}(\xi)$$
 for every $\xi \in \mathbb{R}^n$. (9)

Ideas about proof: Ekeland & Temam, i.e. Separation theorems (c.f. Martinez-Legaz '88 and Barron & Liu '97).

I. E.: f level convex and lsc. If $(\xi_0, b) \notin epi(f)$, then $\exists p \in \mathbb{R}^n$, $\gamma, \beta \in \mathbb{R}$ such that

$$\min\{\langle p, \xi_0 \rangle, \gamma\} - \beta = b,$$

 $\min\{\langle \boldsymbol{p}, \boldsymbol{\xi} \rangle, \gamma\} - \beta < \eta, \quad \forall (\boldsymbol{\xi}, \eta) \in \operatorname{epi}(f).$

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Relaxation and representation

Ninnum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

Vectorial case

Representation for f^{lslc}

Theorem

If $f : \mathbb{R}^n \to [-\infty, \infty]$ is bounded from below, then

$$f^{**}(\xi) = f^{\text{lslc}}(\xi)$$
 for every $\xi \in \mathbb{R}^n$. (9)

Ideas about proof: Ekeland & Temam, i.e. Separation theorems (c.f. Martinez-Legaz '88 and Barron & Liu '97).

I. E.: f level convex and lsc. If $(\xi_0, b) \notin epi(f)$, then $\exists p \in \mathbb{R}^n$, $\gamma, \beta \in \mathbb{R}$ such that

$$\min\{\langle p, \xi_0 \rangle, \gamma\} - \beta = b,$$

$$\min\{\langle \boldsymbol{p}, \boldsymbol{\xi} \rangle, \gamma\} - \beta < \eta, \quad \forall (\boldsymbol{\xi}, \eta) \in \operatorname{epi}(f).$$

Moreover

 $f^{**}(\xi) = \sup\{g(\xi) : g \text{ is level affine and } g(\xi) \le f(\xi)\} = f^{\text{lslc}}(\xi).$

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Relaxation and representation

Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

Vectorial case

Relaxation Theorem - equivalent formulation:

Take $F : u \in u_0 + W_0^{1,\infty}(\Omega) \to \operatorname{ess\,sup}_{x \in \Omega} f(\nabla u(x)),$ \overline{F} be its relaxed functional

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation

Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Voctorial coco $\overline{F} \text{ be its relaxed functional,}$ $F^{\text{lslc}} = \sup\{G, G \leq F, \text{ weakly * lsc, level convex}\},$ $F^* : (L^1(\Omega))^{n+1} \times \mathbb{R} \to [-\infty, \infty], \text{ defined by}$ $F^*(p, \gamma) = \sup\{\min\{< p, u >, \gamma\} - F(u), u \in u_0 + W_0^{1,\infty}(\Omega)\};$ $F^{**} : u_0 + W_0^{1,\infty}(\Omega) \to [-\infty, \infty], \text{ defined by } F^{**}(u) =$ $\sup\{\min\{< p, u >, \gamma\} - F^*(p, \gamma) : p \in (L^1(\Omega))^{n+1}, \gamma \in \mathbb{R}\}$ $< \cdot, \cdot > \text{ is the duality between } L^1 \text{ and } L^\infty, \text{ where } u \in W^{1,\infty}(\Omega)$ is identified with $(u, \nabla u) \in (L^\infty(\Omega))^{n+1}.$

<u>Relaxation</u> Theorem - equivalent formulation:

Take $F: u \in u_0 + W_0^{1,\infty}(\Omega) \to \operatorname{ess\,sup} f(\nabla u(x)),$ $x \in \Omega$

Relaxation and representation

 \overline{F} be its relaxed functional. $F^{\text{lslc}} = \sup\{G, G \leq F, \text{weakly} * \text{lsc, level convex}\},\$ $F^*: (L^1(\Omega))^{n+1} \times \mathbb{R} \to [-\infty, \infty]$, defined by $F^*(p, \gamma) = \sup\{\min\{< p, u >, \gamma\} - F(u), u \in u_0 + W_0^{1,\infty}(\Omega)\};\$ $F^{**}: u_0 + W_0^{1,\infty}(\Omega) \to [-\infty,\infty]$, defined by $F^{**}(u) =$ $\sup\{\min\{\langle p, u \rangle, \gamma\} - F^*(p, \gamma) : p \in (L^1(\Omega))^{n+1}, \gamma \in \mathbb{R}\}$ $<\cdot,\cdot>$ is the duality between L^1 and L^{∞} , where $u \in W^{1,\infty}(\Omega)$ is identified with $(u, \nabla u) \in (L^{\infty}(\Omega))^{n+1}$.

Theorem

$$F^{\mathrm{lslc}}(u) = \overline{F}(u) = F^{**}(u) = \mathrm{ess} \sup_{x \in \Omega} f^{**}(\nabla u(x)),$$

Minimum problems

L $x \in \Omega$

Want to find solutions to (P). So consider again

Minimum Problems:

$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega} f(\nabla u(x)) : u \in u_0 + W_0^{1,\infty}(\Omega) \right\}, \qquad (\mathsf{P})$$
$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega} f^{\operatorname{lslc}}(\nabla u(x)) : u \in u_0 + W_0^{1,\infty}(\Omega) \right\}. \qquad (\mathsf{P}^{lc})$$

Minimum problems

1

Want to find solutions to (P). So consider again

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexit Relaxation an representation

Minimum Problems:

Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega} f(\nabla u(x)) : u \in u_0 + W_0^{1,\infty}(\Omega) \right\}, \qquad (\mathsf{P})$$
$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega} f^{\operatorname{lslc}}(\nabla u(x)) : u \in u_0 + W_0^{1,\infty}(\Omega) \right\}. \qquad (P^{lc})$$

`

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Integral setting: A. Cellina Nonlinear Analysis (1993)

$$\inf\left\{\int_{\Omega} f(\nabla u(x))dx : u \in u_0 + W_0^{1,\infty}(\Omega)\right\} \qquad (P')$$
$$\inf\left\{\int_{\Omega} Cf(\nabla u(x))dx : u \in u_0 + W_0^{1,\infty}(\Omega)\right\}. \qquad (P'^c)$$

 $(P) = (P^{\mathrm{lc}})$

Theorem

Let $\Omega \subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be as before. Let $u_0 \in W^{1,\infty}(\Omega)$ and let (P) and (P^{lc}) be as above. Then

 $(P)=(P^{\rm lc}).$

Moreover, if the boundary condition is affine, say $u_0(x) = u_{\xi_0}(x) := \xi_0 \cdot x + c$ with $\xi_0 \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$, then

$$(P)=f^{\rm lslc}(\xi_0).$$

Proof: $(P) = (P^{lc})$ follows by relaxation. ((P^{lc}) is a minimum, i.e. $\exists \ \overline{u} \in u_0 + W_0^{1,\infty}(\Omega)$ such that $\overline{F}(\overline{u}) = (P^{lc}).$

The case of affine boundary conditions, is supremal Jensen inequality.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation

Minimum Problems:

Sufficient conditions Is the theorem meaningful?

Absolute Minimizers

Another formula for $f^{ m lslc}$

By-product-in the scalar case: when f is continuous and coercive, for every $\xi_0 \in \mathbb{R}^n$,

Introduction

Optimal Design Superlinear case Linear case Generalizations. 1

Supremal Functionals

Level convexit Relaxation and representation

Minimum Problems:

Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers

$$f^{\text{lslc}}(\xi_0) = \inf \left\{ \operatorname{ess\,sup}_{x \in \Omega} f\left(\nabla u\right) : \ u \in u_{\xi_0} + W_0^{1,\infty}(\Omega) \right\} \quad (10)$$

(cf. Barron-Jensen-Wang '99), Weak Morrey-quasiconvexity: $f(\xi_0) = \inf \left\{ \operatorname{ess\,sup}_{x \in Q} f(\nabla u(x)) : u \in u_{\xi_0} + W_0^{1,\infty}(Q) \right\}$ necessary condition for lower semicontinuity in the vectorial case.

Another formula for $f^{ m lslc}$

By-product-in the scalar case: when f is continuous and coercive, for every $\xi_0 \in \mathbb{R}^n$,

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexit Relaxation an representation Minimum

Problems:

Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

$$f^{\text{lslc}}(\xi_0) = \inf \left\{ \operatorname{ess\,sup}_{x \in \Omega} f\left(\nabla u\right) : \ u \in u_{\xi_0} + W_0^{1,\infty}(\Omega) \right\} \quad (10)$$

(cf. Barron-Jensen-Wang '99), Weak Morrey-quasiconvexity: $f(\xi_0) = \inf \left\{ \operatorname{ess\,sup}_{x \in Q} f(\nabla u(x)) : u \in u_{\xi_0} + W_0^{1,\infty}(Q) \right\}$ necessary condition for lower semicontinuity in the vectorial case.

[Proof]: Enough: $\forall \epsilon > 0$ find $u \in u_{\xi_0} + W_0^{1,\infty}(\Omega)$ such that $f^{\text{lslc}}(\xi_0) + \epsilon \ge \underset{x \in \Omega}{\text{ess sup }} f(\nabla u(x)),$

equiv. find $u \in u_{\xi_0} + W_0^{1,\infty}(\Omega)$ s.t. $\nabla u(x) \in L_{f^{\text{lslc}}(\xi_0)+\epsilon}(f)$ a.e. $x \in \Omega$.

Thus we are led to solve a differential inclusion.

Existence of solutions for the non-level convex problem (P).

Theorem (NSC)

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexit Relaxation and representation Minimum Problems:

Necessary and Sufficient conditions

Is the theorem meaningful?

Uniqueness -Non existence Absolute minimizers Vectorial case Consider (P) and (P^{lc}) as above, (i.e. $\Omega, f : \mathbb{R}^n \to \mathbb{R}$ and $u_0 \in W^{1,\infty}(\Omega)$).

(P) has a solution if and only if there exists $u \in u_0 + W^{1,\infty}_0(\Omega)$ such that

$$F(\nabla u(x)) \leq (P^{\mathrm{lc}}), \ a.e. \ x \in \Omega.$$
 (11)

In particular, if u_0 is affine, i. e. $u_0 = u_{\xi_0}$ then condition (11) becomes

$$f(\nabla u(x)) \leq f^{\rm lslc}(\xi_0), \ a.e. \ x \in \Omega.$$
(12)

Moreover, still if $u_0 = u_{\xi_0}$, problem (P) admits a solution if and only if

$$\xi_0 \in L_{f^{\mathrm{lslc}}(\xi_0)}(f) \cup \operatorname{int} L_{f^{\mathrm{lslc}}(\xi_0)}(f^{\mathrm{lslc}}).$$
(13)

Connections with the integral setting (cf. (11) and (12))

Comparing with the analogous problem in the integral setting (scalar case, f not convex),

$$\inf\left\{\int_{\Omega}f(\nabla u(x))dx:u\in u_0+W^{1,\infty}_0(\Omega)\right\},$$

we recall that the correspondent formulas to (11) and (12) are given by

$$f(\nabla \overline{u}(x)) = Cf(\nabla \overline{u}(x))$$
 a. e. in Ω , (14)

and

$$\int_{\Omega} Cf(\nabla \overline{u}(x)) dx = Cf(\xi_0) \mathcal{L}(\Omega), \qquad (15)$$

where $\overline{u} \in u_0 + W^{1,\infty}(\Omega)$ and *Cf* stands for the convex envelope of *f* and in the affine case recall $u_0 = u_{\xi_0}$.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexit Relaxation and representation Minimum Problems:

Necessary and Sufficient conditions

Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

Tool: Differential Inclusions (cf. Cellina, Dacorogna, Friesecke, Marcellini)

Theorem (NDI)

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems:

Necessary and Sufficient conditions

Is the theoren meaningful?

Uniqueness -Non existence

minimizers Vectorial case Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, $E \subset \mathbb{R}^n$, $\xi_0 \in \mathbb{R}^n$. If $u \in u_{\xi_0} + W_0^{1,\infty}(\Omega)$ is such that

 $\nabla u(x) \in E$, a.e. $x \in \Omega$, then $\xi_0 \in E \cup \operatorname{int} \operatorname{co} E$,

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Tool: Differential Inclusions (cf. Cellina, Dacorogna, Friesecke, Marcellini)

Theorem (NDI)

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems:

Necessary and Sufficient conditions

Is the theorem meaningful?

Uniqueness -Non existence Absolute minimizers Vectorial case Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, $E \subset \mathbb{R}^n$, $\xi_0 \in \mathbb{R}^n$. If $u \in u_{\xi_0} + W_0^{1,\infty}(\Omega)$ is such that

 $\nabla u(x) \in E$, a.e. $x \in \Omega$, then $\xi_0 \in E \cup int \operatorname{co} E$,

Theorem (SDI)

Let $\varphi \in W^{1,\infty}(\Omega)$ satisfying

 $\nabla \varphi(x) \in E \cup \operatorname{int} \operatorname{co} E$, a.e. in Ω .

Then $\exists u \in \varphi + W_0^{1,\infty}(\Omega)$ s. t. $\nabla u(x) \in E$, a.e. in Ω . Moreover, given $\varepsilon > 0$, u can be chosen such that $||u - \varphi||_{L^{\infty}(\Omega)} \le \varepsilon$.

Back to Theorem NSC

Theorem (NSC)

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexit Relaxation and representation Minimum Problems:

Necessary and Sufficient conditions

Is the theorer meaningful?

Uniqueness -Non existence Absolute minimizers Vectorial case Let $\Omega \subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be as above. Let $u_0 \in W^{1,\infty}(\Omega)$. Then problem (P) has a solution if and only if there exists $u \in u_0 + W_0^{1,\infty}(\Omega)$ such that

 $f(\nabla u(x)) \leq (P^{\mathrm{lc}}), a.e. x \in \Omega.$ (11)

In particular, if u_0 is affine, i. e. $u_0 = u_{\xi_0}$ then condition (11) becomes

$$f(
abla u(x)) \leq f^{ ext{lslc}}(\xi_0), \ a.e. \ x \in \Omega.$$
 (12)

Moreover, still if $u_0 = u_{\xi_0}$, problem (P) admits a solution if and only if

 $\xi_0 \in L_{f^{\text{lslc}}(\xi_0)}(f) \cup \text{int } L_{f^{\text{lslc}}(\xi_0)}(f^{\text{lslc}}).$ (13)

Back to Theorem NSC-few things

The last assertion of the Theorem, if u_0 is not affine, says that

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems:

Necessary and Sufficient conditions

Is the theorem meaningful?

Uniqueness -Non existence

minimizers Vectorial case

is a sufficient condition for existence of solutions to problem
$$(P)$$
.

 $\nabla u_0(x) \in L_{(P^{lc})}(f) \cup \operatorname{int} L_{(P^{lc})}(f^{lslc}), \text{ a.e. } x \in \Omega$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Back to Theorem NSC-few things

The last assertion of the Theorem, if u_0 is not affine, says that

 $\nabla u_0(x) \in L_{(P^{lc})}(f) \cup \operatorname{int} L_{(P^{lc})}(f^{lslc}), \text{ a.e. } x \in \Omega$

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems:

Necessary and Sufficient conditions

Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case

is a sufficient condition for existence of solutions to problem
$$(P)$$
.
If $u \in u_0 + W_0^{1,\infty}(\Omega)$ solves problem (P) then Theorem $[(P) = (P^{lc})]$, implies

ess sup
$$f(\nabla u(x)) = (P^{lc})$$
, i.e. (11)

For the reverse implication observe that $(P^{lc}) \leq (P)$.

(12) is supremal Jensen's ineq.

(13) follows from Theorems [NDI] and [SDI] (with $E = L_{f^{\text{lslc}}(\xi_0)}(f)$) and from $\operatorname{co}(L_{f^{\text{lslc}}(\xi_0)}(f)) = L_{f^{\text{lslc}}(\xi_0)}(f^{\text{lslc}})$.

A solution always exists in dimension 1

Corollary

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions

Is the theorem meaningful?

Uniqueness -Non existence Absolute minimizers Vectorial case

Let
$$\Omega \subset \mathbb{R}$$
 and $f : \mathbb{R} \rightarrow] - \infty; +\infty[$ be as above. Consider (P) with $u_0 = u_{\xi_0}$. Then problem (P) admits a solution for every $\xi_0 \in \mathbb{R}$.

Proof. Want to show that $\xi_0 \in \mathbb{R}$ verifies (13):

$$\xi_0 \in L_{f^{\mathrm{lslc}}(\xi_0)}(f) \cup \mathrm{int} \ L_{f^{\mathrm{lslc}}(\xi_0)}(f^{\mathrm{lslc}}).$$

Clearly $\xi_0 \in L_{f^{\text{lslc}}(\xi_0)}(f^{\text{lslc}}) = \operatorname{co} L_{f^{\text{lslc}}(\xi_0)}(f)$. If $\xi_0 \in L_{f^{\text{lslc}}(\xi_0)}(f)$ OK. W.I.g. $\xi_0 \in \operatorname{co} L_{f^{\text{lslc}}(\xi_0)}(f) \setminus L_{f^{\text{lslc}}(\xi_0)}(f)$. We conclude that $\xi_0 \in \operatorname{int} L_{f^{\text{lslc}}(\xi_0)}(f^{\text{lslc}}) = \operatorname{int} \operatorname{co} L_{f^{\text{lslc}}(\xi_0)}(f)$: in \mathbb{R} , the elements of the boundary of a convex hull belong either to the original set or to the complement of the convex hull.

Counterexample in dimension 2

The set int co $L_{f^{lslc}(\xi_0)}(f)$ might be empty.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions

Is the theorem meaningful?

Uniqueness -Non existence Absolute minimizers Vectorial case

Counterexample in dimension 2

The set $\operatorname{int} \operatorname{co} L_{f^{\operatorname{lslc}}(\xi_0)}(f)$ might be empty.

Example

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions

Is the theorem meaningful?

Uniqueness -Non existence Absolute minimizers Vectorial case

Let
$$f: (z_1, z_2) \in \mathbb{R}^2 \to (z_1^2 - 1)^2 + z_2^2 \in \mathbb{R}$$
. Clearly $f \ge 0$, and $f(z_1, z_2) = 0$ if and only if $(z_1, z_2) = (\pm 1, 0)$. Since $f \ge 0$ then $f^{\text{lslc}} \ge 0$, and thus

$$\left\{f^{\text{lslc}}=0\right\} = L_0(f^{\text{lslc}}) = \operatorname{co} L_0(f) = [-1,1] \times \{0\},$$

and it has empty interior.

Take $\xi_0 \in (-1,1) \times \{0\}$, then $\nabla u_{\xi_0} \notin L_{f^{\text{lslc}}(\xi_0)}(f) \cup \text{int } L_{f^{\text{lslc}}(\xi_0)}(f^{\text{lslc}}).$ Consider the minimizing problem (*P*) related to the function *f* as above, with b.c. $u_0 = u_{\xi_0}$, then (*P*^{lc}) admits a unique solution.

Another sufficient condition for existence with more general boundary data.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem magaziaceful?

Uniqueness -Non existence

Absolute minimizers Vectorial case

Theorem

Let $\Omega \subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be as above. Let $u_0 \in W^{1,\infty}(\Omega)$. Consider (P) and (P^{lc}), and assume that problem (P^{lc}) admits a solution $\overline{u} \in C^1_{piec}(\Omega)$. If f^{lslc} is constant in each connected component of the set where $f^{lslc} < f$, then problem (P) has a solution.

Non-existence Results

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

Absolute minimizers Vectorial case

Theorem (in purpose for f^{lslc})

Let $\Omega \subset \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$ be as above. Consider (P) and (P^{lc}) with the affine boundary condition u_{ξ_0} and assume f^{lslc} satisfies the condition

$$\left. \begin{array}{c} \operatorname{ess\,sup} f^{\operatorname{lslc}}\left(\nabla u\left(x\right)\right) = f^{\operatorname{lslc}}(\xi_{0}) \\ u \in u_{\xi_{0}} + W_{0}^{1,\infty}(\Omega) \end{array} \right\} \Rightarrow u = u_{\xi_{0}},$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

then problem (P^{lc}) has a unique solution. So if $f \neq f^{lslc}$, (P) has no solution!

Non-existence Results

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

Absolute minimizers Vectorial case

Theorem (Non Existence)

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, $u_{\xi_0}(x) = \xi_0 \cdot x + c$ for some $\xi_0 \in \mathbb{R}^n$ and let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuous and strictly level convex function. Then problem

$$\inf\left\{ \operatorname{ess\,sup}_{x\in\Omega} f\left(\nabla u\left(x\right)\right): \ u\in u_{\xi_{0}}+W^{1,\infty}_{0}(\Omega)\right\}$$

has a unique solution. Thus (P) with $u_0 = u_{\xi_0}$ for some $\xi_0 \in \mathbb{R}^n \cap \{f^{\text{lslcs}}(\xi) < f(\xi)\}$ has no solution.

A function is said to be strictly level convex if and only if

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

Absolute minimizers Vectorial case

for every
$$t\in(0,1)$$
 and $\xi
eq\eta.$

Equivalently, in the case f is a Borel measurable and finite function,

$$f\left(\int_{\Omega} \varphi \, d\mu\right) < \mu - \operatorname{ess\,sup}_{x \in \Omega} f(\varphi(x)),$$

 $f(t\xi + (1-t)\eta) < \max\{f(\xi), f(\eta)\}$

for every probability measure μ on \mathbb{R}^n supported in the open set $\Omega \subset \mathbb{R}^d$ and every nonconstant $\varphi \in L^1_{\mu}(\Omega; \mathbb{R}^n)$.

If for every c in the range of f, $L_c(f)$ is convex and $R_c(f) \subseteq \operatorname{Ext}(L_c(f))$.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

Absolute minimizers Vectorial case **Crucial observation:** In \mathbb{R}^n , n > 1, f^{lslc} is not strictly level convex!

Cf. Caratheodory type formula for f^{lslc} : if $f^{\text{lslc}}(\xi_0) < f(\xi_0)$ and f coercive, then f^{lslc} is constant in a segment line containing ξ_0 , eventually with ξ_0 an extreme point.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meanineful?

Uniqueness -Non existence

Absolute minimizers Vectorial case **Crucial observation:** In \mathbb{R}^n , n > 1, f^{lslc} is not strictly level convex!

Cf. Caratheodory type formula for f^{lslc} : if $f^{\text{lslc}}(\xi_0) < f(\xi_0)$ and f coercive, then f^{lslc} is constant in a segment line containing ξ_0 , eventually with ξ_0 an extreme point.

Thus nonexistence of solution to (P) has to be ensured via weaker conditions on f^{lslc} .

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers Vectorial case **Crucial observation:** In \mathbb{R}^n , n > 1, f^{lslc} is not strictly level convex!

Cf. Caratheodory type formula for f^{lslc} : if $f^{\text{lslc}}(\xi_0) < f(\xi_0)$ and f coercive, then f^{lslc} is constant in a segment line containing ξ_0 , eventually with ξ_0 an extreme point.

Thus nonexistence of solution to (P) has to be ensured via weaker conditions on f^{lslc} .

Strict level convexity of supremand does not carry to the supremal functional *F*!

Non existence of solutions

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers Vectorial case **1.** $f : \mathbb{R}^n \to \mathbb{R}$, level convex is *strictly level convex at* $\xi_0 \in \mathbb{R}^n$, if for every $t \in (0, 1)$ and for every $\xi \neq \eta : \xi_0 = t\xi + (1 - t)\eta \Rightarrow f(\xi_0) < \max\{f(\xi), f(\eta)\},$ i.e. $\xi_0 \in \operatorname{Ext} L_{f(\xi_0)}(f)$

2. or for every $t \in [0,1], \xi \neq \xi_0, f(t\xi_0 + (1-t)\xi) < \max\{f(\xi_0), f(\xi)\},\$

This condition is stronger than **1**., take $f(\xi) = \begin{cases} -\xi & \text{if } \xi \leq 0, \\ 0 & \text{if } \xi > 0. \end{cases}$

Non existence of solutions

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem mocasing/12

Uniqueness -Non existence

minimizers Vectorial case **Other conditions:** 3. $f : \mathbb{R}^n \to \mathbb{R}$, level convex is *strictly level convex at* $\xi_0 \in \mathbb{R}^n$ *in at least one direction* if there exists $\alpha \in \mathbb{R}^n \setminus \{0\}$ such that if for some γ and $\eta \in \mathbb{R}^n$, $\begin{cases} \xi_0 = t\gamma + (1-t)\eta, t \in (0,1) \\ f(\xi_0) = \max\{f(\gamma), f(\eta)\} \end{cases}$ then $(\gamma - \eta) \cdot \alpha = 0$

f strictly level convex at ξ_0 in at least one direction (and lsc.) iff $\xi_0 \in \partial L_{f(\xi_0)}(f)$

$$\mathbf{4....} \begin{cases} \xi = t\xi_0 + (1-t)\eta, t \in (0,1) \\ f(\xi) = \max\{f(\gamma), f(\eta)\} \end{cases} \text{ then } (\xi_0 - \eta) \cdot \alpha = 0$$

 $f : \xi \in \mathbb{R}^2 \to \operatorname{dist}(\xi, \mathbb{R}^+ \times \mathbb{R})$ is satisfying **3**. at $\xi_0 = (0, 0)$ but neither **1**., **2**. or **4**.

Nonexistence of solutions

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

Absolute minimizers Vectorial case

Theorem

Let Ω , f be as above. Let $\xi_0 \in \mathbb{R}^n$, consider problem (P) for $u_0 = u_{\xi_0}$ and assume that $f^{\text{lslc}}(\xi_0) < f(\xi_0)$. (P) has a solution if and only if f^{lslc} is not strictly level convex at ξ_0 in any direction.

[Proof.] It relies on the fact that (P) admits a solution $u \neq u_{\xi_0}$ if $\xi_0 \in int(L_{f(\xi_0)}(f))$.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -

Absolute minimizers

Vectorial case

Definition one possible Definition $u^* \in W^{1,\infty}(\Omega)$ is an absolute minimizer of $F(u, \Omega) := \operatorname{ess\,sup}_{x \in \Omega} f(\nabla u(x))$, if, for any open set $\Omega' \subset \overline{\Omega'} \subset \Omega$, u^* is a solution for

$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega'} f\left(\nabla u(x) \right) : \ u \in u^* + W^{1,\infty}_0(\Omega') \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meanineful?

Uniqueness -Non existence

Absolute minimizers

Definition one possible Definition $u^* \in W^{1,\infty}(\Omega)$ is an absolute minimizer of $F(u, \Omega) := \operatorname{ess sup}_{x \in \Omega} f(\nabla u(x))$, if, for any open set $\Omega' \subset \overline{\Omega'} \subset \Omega$, u^* is a solution for

$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega'} f\left(\nabla u(x) \right) : \ u \in u^* + W^{1,\infty}_0(\Omega') \right\}.$$

This property is automatically inherited by minimizers of analogous problem in the integral setting.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meanineful?

Uniqueness -Non existence

Absolute minimizers Vectorial case

Definition one possible Definition $u^* \in W^{1,\infty}(\Omega)$ is an absolute minimizer of $F(u, \Omega) := \operatorname{ess sup}_{x \in \Omega} f(\nabla u(x))$, if, for any open set $\Omega' \subset \overline{\Omega'} \subset \Omega$, u^* is a solution for

$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega'} f\left(\nabla u(x) \right) : \ u \in u^* + W^{1,\infty}_0(\Omega') \right\}.$$

This property is automatically inherited by minimizers of analogous problem in the integral setting.

It fails for supremals

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers Vectorial case

Definition one possible Definition $u^* \in W^{1,\infty}(\Omega)$ is an absolute minimizer of $F(u, \Omega) := \operatorname{ess\,sup}_{x \in \Omega} f(\nabla u(x))$, if, for any open set $\Omega' \subset \overline{\Omega'} \subset \Omega$, u^* is a solution for

$$\inf \left\{ \operatorname{ess\,sup}_{x \in \Omega'} f\left(\nabla u(x) \right) : \ u \in u^* + W^{1,\infty}_0(\Omega') \right\}.$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

This property is automatically inherited by minimizers of analogous problem in the integral setting.

It fails for supremals

From now on we will consider Ω convex.

In the above definition no b.c. have been imposed.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers

In the above definition no b.c. have been imposed.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions

Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers

Example

if f level convex, then every affine $u^* = u_{\xi}$ is an AML!

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

In the above definition no b.c. have been imposed.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

- Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?
- Uniqueness -Non existence

Absolute minimizers Vectorial case

Example

if f level convex, then every affine $u^* = u_{\xi}$ is an AML!

- (i) f level convex and (P) has u_{ξ_0} as b. c., then u_{ξ_0} is a solution to (P) which is an absolute minimizer.
- (ii) If f is strictly level convex at ξ_0 in at least one direction and (P) has u_{ξ_0} as b. c. then u_{ξ_0} is an absolute minimizer and u_{ξ_0} is the only solution to (P). Thus we have uniqueness of the solution to (P). But there is no uniqueness of absolute minimizers since, all the other affine functions are AML.

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions

meaningful? Uniqueness -

Absolute minimizers

Vectorial case

Question: Does strict level convexity ensure that minimizers are AML?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers Question: Does strict level convexity ensure that minimizers are AML?

Answer: NO even if b.c. are imposed. I.e. Lipschitz extension problem with b.c. admits more than one solution, but A.M.L. are unique because they solve $\Delta_{\infty} u = 0$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers Vectorial case Question: Does strict level convexity ensure that minimizers are AML?

Answer: NO even if b.c. are imposed. I.e. Lipschitz extension problem with b.c. admits more than one solution, but A.M.L. are unique because they solve $\Delta_{\infty} u = 0$.

What about converse? Are AML unique if minimizers unique? Again the answer is no since no b.c. is imposed to define A.M.L. and affine functions answer.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem

Uniqueness -Non existence

Absolute minimizers **Observation**: We do not know if Crandall's arguments apply to other strict level convex functions (not $\equiv |\cdot|$) to get uniqueness of A.M.L. in terms of PDEs.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers **Observation**: We do not know if Crandall's arguments apply to other strict level convex functions (not $\equiv |\cdot|$) to get uniqueness of A.M.L. in terms of PDEs.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

What about AML for non level convex problems?

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers **Observation**: We do not know if Crandall's arguments apply to other strict level convex functions (not $\equiv |\cdot|$) to get uniqueness of A.M.L. in terms of PDEs.

What about AML for non level convex problems? Partial answer: If $f(\xi_0) = f^{\text{lslc}}(\xi_0)$ then ξ_0 is AML for (*P*).

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers **Observation**: We do not know if Crandall's arguments apply to other strict level convex functions (not $\equiv |\cdot|$) to get uniqueness of A.M.L. in terms of PDEs.

What about AML for non level convex problems? Partial answer: If $f(\xi_0) = f^{\text{lslc}}(\xi_0)$ then ξ_0 is AML for (*P*).

In general one should guarantee that $f(\nabla u(x)) \leq (P'^{lc})$ on any open subset of $\Omega_{...}$

Much more difficult!

There are not relaxation results yet! Why?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful?

Uniqueness -Non existence

Absolute minimizers

Much more difficult!

There are not relaxation results yet! Why?

A function f is level convex if and only if all its level sets $L_{\alpha}(f)$ are convex (for every α), i.e. if and only if $I_{L_{\alpha}(f)}$ is convex for every α .

$$\left(I_E(x) = \left\{\begin{array}{ll} 0 & \text{if } x \in E, \\ +\infty & \text{otherwise.} \end{array}\right)\right.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

Absolute minimizers

Much more difficult!

There are not relaxation results yet! Why?

A function f is level convex if and only if all its level sets $L_{\alpha}(f)$ are convex (for every α), i.e. if and only if $I_{L_{\alpha}(f)}$ is convex for every α .

$$\left(I_E(x) = \left\{\begin{array}{ll} 0 & \text{if } x \in E, \\ +\infty & \text{otherwise.} \end{array}\right)\right.$$

A function f is weak Morrey quasiconvex if and only if $I_{L_{\alpha}(f)}$ is QUASICONVEX in the integral sense! (cf. Barron & Jensen & Wang '01 Ann. I. H. P.)

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence

Absolute minimizers

Much more difficult!

There are not relaxation results yet! Why?

A function f is level convex if and only if all its level sets $L_{\alpha}(f)$ are convex (for every α), i.e. if and only if $I_{L_{\alpha}(f)}$ is convex for every α .

$$\left(I_E(x) = \left\{\begin{array}{ll} 0 & \text{if } x \in E, \\ +\infty & \text{otherwise.} \end{array}\right)\right.$$

A function f is weak Morrey quasiconvex if and only if $I_{L_{\alpha}(f)}$ is QUASICONVEX in the integral sense! (cf. Barron & Jensen & Wang '01 Ann. I. H. P.) But Quasiconvexity in the vectorial integral setting does not have a precise meaning!

Introduction

Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Minimum Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

minimizers Vectorial case

THANK YOU!

Appendix

STRONG MORREY QUASICONVEXITY: Definition A Borel

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and representation Problems: Necessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute

Vectorial case

measurable function $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is said to be strong Morrey quasiconvex if for any $\varepsilon > 0$, for any $\xi \in \mathbb{R}^{m \times n}$, and any K > 0, there exists a $\delta = \delta(\varepsilon, K, \xi) > 0$ such that if $\varphi \in W^{1,\infty}(Q; \mathbb{R}^m)$ satisfies

$$\|\nabla \varphi\|_{L^{\infty}(Q)} \leq K, \qquad \max_{x \in \partial Q} |\varphi(x)| \leq \delta,$$

then,

$$f(\xi) \leq \operatorname{ess\,sup}_{x \in Q} f(\xi + \nabla \varphi(x)) + \varepsilon.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Appendix

STRONG MORREY QUASICONVEXITY: Definition A Borel

Introduction

Optimal Design Superlinear case Linear case Generalizations.

Supremal Functionals

Level convexity Relaxation and Minimum Problems: Neccessary and Sufficient conditions Is the theorem meaningful? Uniqueness -Non existence Absolute minimizers Vectorial case measurable function $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is said to be strong Morrey quasiconvex if for any $\varepsilon > 0$, for any $\xi \in \mathbb{R}^{m \times n}$, and any K > 0, there exists a $\delta = \delta(\varepsilon, K, \xi) > 0$ such that if $\varphi \in W^{1,\infty}(Q; \mathbb{R}^m)$ satisfies

$$\|\nabla \varphi\|_{L^{\infty}(Q)} \leq K, \qquad \max_{x \in \partial Q} |\varphi(x)| \leq \delta,$$

then,

$$f(\xi) \leq \operatorname{ess \, sup}_{x \in Q} f(\xi + \nabla \varphi(x)) + \varepsilon.$$

This is the condition proved to be N & S for LSC, but not yet proved to be stronger than Weak M-qcx

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ