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OUTLINE

I Physical introduction

I Main point: mathematical description of admissible lines and
deformations

I Choice of currents: for deformation AND lines



What is a dislocation?

I The 3 scale of matter description
I Atomic: no precise line location, misfit in atom arrangement
I Mesoscopic: precise line location, singularity set (of the

distortion β), concentration properties:

−(curlβ)T = Λ = τ ⊗ BδL : 2nd-rank tensor

I Atomic origin

(multivalued displacement)

Burgers ↑ B
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I Loops
I overlap
I intersect

I Endoints on the
boundary

I Clusters
I mobile geometric
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Incompatibility and multivaluedness

I Smooth infinitesimal mesoscopic elasticity. Given x0, x , γ
x
x0

(PATH) and E (STRAIN) ∃ U,W : S3 ×M3 → R such that

u(x) = U(E , curl E ; γxx0
) w(x) = W (curl E ; γxx0

).

I Displacement u and rotation w well defined
⇔ u(x) = U(E , curl E ; x0; x)⇔ inc E = curl(curl E)T = 0

[ui ](x) =

∫
Sγx0,x−γ̃x0,x

(y − x)× inc E · dS(y)

I INVARIANT of L: MESOSCOPIC Burgers vector:

B = [b] =

∫
CL

[E + (y − x0)× curl E ] · dy
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Minimization problem

I Nonlinear elasticity: setting of the problem

I Given a family of dislocations L each with Burgers vector b:

I Dislocation density: Λ = τ ⊗ BδL
I Deformation variable F , constrained by:

curlF = −ΛT = −B ⊗ τδL (?)

I Stored energy W, to be minimized under (?)

MIN W(F ,Λ(L)) w .r .t. F ,L

I Class of deformations F (cf. Palombaro and Müller, 2008 and
SCALA TALK)

I Class of dislocations L (THIS TALK)



Admissible deformations

I Deformation variable F , defect variable Λ

I constrained by curlF = −ΛT
L

I B =
∫
CL(r) FdH

1

⇒ F ∼ 1

r
close to L

I ⇒ 1
2AE · E unbounded ⇒ F /∈ L2...but linear assumption OK

away from L...

I Thus: F ∈ Lp, 1 < p < 2 (cavitation: 1< p < 3/2)
I Other constraints:

(i) no reflexion: det F > 0,
(ii) no extreme deformations:W (F )→∞ as det F → 0

I Energy (model choice: nonlinear everywhere+constraint)

Ŵ(F ) =W(F ,Λ) =W(F , curlF )
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Energy

I Energy form

Ŵ(F ) =W(F ,Λ) =

∫
Ω
We(F )dx +Wdefect(Λ)

I assumptions on We:
I Polyconvexity, i.e., convexity in the minors (in particular det F )
I Bound from below (growth): coercivity in Lp

I example: Ogden material

W (F ) =

{
a ‖ F ‖p +b ‖ cofF ‖q +c | detF |r −d log(detF ) + e,

+∞, if F /∈M3
+

I assumptions for Wdefect (cf. Conti and Garroni, 2014):
I Wdefect(ΛL) :=

∫
L
ψ(θb, τ)dH1

I with coercivity and lsc (by relaxation)
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MESOSCOPIC SCALE: Physical properties of the
line (1)



MESOSCOPIC SCALE: Physical properties of the
line (2)



Main model object: Currents (intro 1)

I DM(Ω) = D(Ω; ΛMRn): C∞-differential forms with degree M
with compact support in Ω.

I DM(Ω) := D′(Ω; ΛMRn):M-dimensional currents on Ω

I weak convergence:

〈Tk , ω〉 → 〈T , ω〉

for every ω ∈ DM(Ω).

I [S ] ∈ DM(Rn) will denote the currents obtained by integration
on S :

[S ](ω) =

∫
S
〈ω, ~S〉dHM for ω ∈ DM(Ω) (1)
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Main model object: Currents (intro 2)

I Boundary of a current DM(Ω) is a current ∂T ∈ DM−1(Ω)
defined by

∂T (ω) := T (dω) for ω ∈ DM−1(Ω)

I ω = fidxi ⇒ dω =
∂fj
∂xi

dxi ∧ dxj

I Mass of a current T ∈ DM(Ω):

|T | := sup
ω∈DM(Ω),|ω|≤1

T (ω)

I Other important quantity:

N(T ) := |T |+ |∂T |
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Currents (3): integer-multiplicity currents

I Short notation: T = {S , τ, θ}
I Let τ(x) ∈ TxS is a simple unit M-vector for HM -a.e. x ∈ S ,
θ : S → Z be HM -integrable,

I Integer-multiplicity M-current:

T (ω) =

∫
S
〈ω(x), τ(x)〉θ(x)dHM(x) for ω ∈ DM(Ω)

I Compactness for i.m. currents

Theorem (Federer 1)

Let {Ti} ⊂ DM(Ω) be a sequence of integer multiplicity currents
such that

NU(Ti ) < C for all i and U ⊂⊂ Ω,

with C > 0. Then there exist an integer multiplicity current
T ∈ DM(Ω) and a subsequence {Tk(i)}i such that Tk(i) ⇀ T
weakly in Ω as i →∞.
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Currents (4): indecomposability

I An integer-multiplicity current T ∈ DM(Rn) is said
indecomposable if there exists no integral current R such that
R 6= 0 6= T − R and

N(T ) = N(R) + N(T − R)

I Theorem (Federer 2)

I For every integer-multiplicity current T there exists a sequence
of indecomposable integral currents Ti such that

T =
∑

i Ti and N(T ) =
∑

i N(Ti ).
I Suppose T is an indecomposable integer-multiplicity 1-current

on Rn. Then there exists a Lipschitz function : R→ Rn with
Lip(f ) ≤ 1 s.t.

f x[0, |T |] is injective and T = f][0, |T |].

Moreover ∂T = 0 if and only if f (0) = f (|T |).
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Currents (5): Cartesian maps

I Let u ∈W 1,p(Ω,Rn). Graph of u: Gu ⊂ Ω× Rn as

Gu := {(x , u(x)) : x ∈ Ru ∩ Ω}.

I Graph of u is a rectifiable

I Define: Ap(Ω,Rn) := {u ∈W 1,p(Ω,R3) : Mβ
ᾱ(Du) ∈

Lp(Ω);∀α, β with |α|+ |β| = 3}

I Define: Gu(ω) =
∫

Ω〈ω, ~Gu〉dHnxGu
I Cartp(Ω,Rn) := {u ∈ Ap(Ω;Rn) : ∂Gux(Ω× Rn) = 0}

I Theorem (Compactness)

Let uk ∈ Cartp(Ω,Rn) such that uk ⇀

u weakly in Lp(Ω,Rn),Mβ
ᾱ(Duk) ⇀ vβᾱ weakly in Lp(Ω), for

all α, β with |α|+ |β| = n, then u ∈ Cartp(Ω,Rn) and

vβᾱ = Mβ
ᾱ(Du)
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Dislocations as currents (1)

I L =
∑

i∈I⊂N Li (Li : integer-multiplicity 1-currents).

I Li ⇒ bi ∈ BI countable

I A dislocation is a couple LI := (L,BI) = {L, τ, θ,BI}

I An admissible Burgers vectors (or crystallographic):
B := {b ∈ R3 : ∃β ∈ Z3 such that bi = βi b̄i , for i = 1, 2, 3}

I The density of LI is the linear functional ΛL:

〈ΛL,w〉 :=
∑

i∈I⊂N
Li ((wbi )∗)

for every w ∈ C∞c (Ω,R3×3) ((wb)∗ := wkjbjdxk).

I Two dislocations LI and L′I are geometrically equivalent if

ΛL = ΛL′ .

I Geometric necessary dislocation set L? is the support of ΛL
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Regular dislocations

I Origin of a dislocation: nucleation as a simple loops + time
evolution

I generator loop is submitted to forces (self and
Peach-Köhler)⇒ move, interact, disapear or form clusters

I for each b ∈ B, a b-dislocation current is an integral 1-current
Lb such that:

CurlF = −ΛT
Lb

I Regular dislocation: L =
∑

b∈B Lb
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Canonical projections

I L can be dense (L̄ 6= L)

I the support of L and the support of ΛL are not equal

I · · · one needs a canonical form · · ·

I Projections on the crystallocraphic basis: b = (β1, β2, β3) and

Lb,i := {Lb, τb, βiθb}

L :=
⋃
b∈B

Lb, θi :=
∑
b∈B

sg(τb)βiθ
b ⇒ Li := {L, τ, θi}

I Canonical dislocation:

L̂ = L1 + L2 + L3 with ΛL = ΛL̂

|L̂| ≤ C‖ΛL‖M(Ω̄)
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Class of admissible deformations

EXISTENCE RESULT FOR

inf
(F ,ΛL)∈F×MD
−curlF=ΛT

L

W(F ,ΛL), (2)

ADMISSIBLE CLASS

F := {(F ,L) ∈ Lp(Ω,R3×3)×MD : F satisfies (i)-(iii) below}

(i) The dislocation current L = {L, τ, θ} satisfies the boundary
condition and there exists F̂ ∈ Lp(Ω̂,R3×3) with F̂xΩ = F
such that −curlF̂ = ΛT

L in Ω̄.

(ii) detF > 0 almost everywhere in Ω.
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Existence result for mesoscopic dislocations

W(F ,ΛL) :=

∫
Ω
We(F )dx + Wdefect(ΛL) ≥

C
(
‖|M(F )|‖Lp + |ΛL|

)
− β

(W1) We(F ) ≥ h(detF ), for a continuous real function h such that
h(t)→∞ as t → 0

(W2) We is polyconvex: We = g(M(F )), with g convex

(W3) Wdefect :=
∫
L ψ(θb, τ)dH1 is weakly lower semicontinuous.

SUFFICIENT CONDITIONS TO APPLY THE DIRECT
METHOD
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Main difficulties for the proof

I The direct method: OK (provided series of lemmas)
I The difficult part: convergence of the minors

I Let uk ∈ Ap(Ω,R3) s.t. uk → u ∈ Lp(Ω,T3)
I ∃vαβ ∈ Lp(Ω) s.t. Mβ

ᾱ(Duk) ⇀ vβα
I when do: u ∈ Ap(Ω,R3) and vβα = Mβ

ᾱ(Du)???
I ANSWER 1: u Cartesian map in a ball away from L AND

compactness of L (Müller & Palombaro and SVG 1)
I ANSWER 2:

M(∂Guk ) < C < +∞
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ᾱ(Du)???
I ANSWER 1: u Cartesian map in a ball away from L AND

compactness of L (Müller & Palombaro and SVG 1)
I ANSWER 2:

M(∂Guk ) < C < +∞

(see SCALA talk)



Thank you for the attention!


