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OUTLINE

» Physical introduction

» Main point: mathematical description of admissible lines and
deformations

» Choice of currents: for deformation AND lines



What is a dislocation?

» The 3 scale of matter description

» Atomic: no precise line location, misfit in atom arrangement
» Mesoscopic: precise line location, singularity set (of the
distortion /3), concentration properties:

—(curl)t = A = 7 ® Bd, : 2nd-rank tensor

> Atomic origin
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» The 3 scale of matter description

» Atomic: no precise line location, misfit in atom arrangement
» Mesoscopic: precise line location, singularity set (of the
distortion /3), concentration properties:

—(curl)t = A = 7 ® Bd, : 2nd-rank tensor

» Atomic origin (multivalued displacement)

Burgers

edge dislocation



Geometry of a dislocation

» Loops

> overlap
> intersect
» Endoints on the
boundary
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> intersect
» Endoints on the
boundary

» Clusters

» mobile geometric
necessary dislocations

» immobile statistically
stored

» forest dislocations
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Incompatibility and multivaluedness

» Smooth infinitesimal mesoscopic elasticity. Given xo, x, V5,
(PATH) and £ (STRAIN) 3 U, W : S® x M3 — R such that

u(x) = U(&, curl S;’yffo) w(x) = W(curl &; 'yjfo).



Incompatibility and multivaluedness

» Smooth infinitesimal mesoscopic elasticity. Given xo, x, V5,
(PATH) and £ (STRAIN) 3 U, W : S® x M3 — R such that

u(x) = U(&,curl &vy) w(x) = W(curl &%)
» Displacement u and rotation w well defined
& u(x) = U(E,curl &; xp; x) & inc € = curl(curl £)T =0
[ui](x) :/ (y — x) x inc £ - dS(y)

IXxp X *:Yxo 3 X

» INVARIANT of £: MESOSCOPIC Burgers vector:

B:[b]:/c [€ + (¥ — x0) x curl €] - dy



Minimization problem

» Nonlinear elasticity: setting of the problem
> Given a family of dislocations £ each with Burgers vector b:
» Dislocation density: A =7 ® Bé,

» Deformation variable F, constrained by:
curlF = AT = —B®7é, (%)

» Stored energy WV, to be minimized under (x)

MIN W(F,N(L)) w.r.t. F, L

» Class of deformations F (cf. Palombaro and Miiller, 2008 and
SCALA TALK)

» Class of dislocations £ (THIS TALK)



Admissible deformations

» Deformation variable F, defect variable A
» constrained by curlF = —/\E
» B= fcﬁ(r) FdH!

1
= F ~ =~ closeto L
r

v

= 1A - € unbounded = F ¢ L2...but linear assumption OK
away from L...

Thus: F € LP,1 < p < 2 (cavitation: 1< p < 3/2)

Other constraints:
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Admissible deformations

» Deformation variable F, defect variable A
» constrained by curlF = —/\E
» B= fcﬁ(r) FdH!

1
= F ~ =~ closeto L
r

» = 1AE - € unbounded = F ¢ L2...but linear assumption OK
away from L...

» Thus: F € LP,1 < p < 2 (cavitation: 1< p < 3/2)

» Other constraints:

(i) no reflexion: det F > 0,
(i) no extreme deformations:W(F) — oo as det F — 0

» Energy (model choice: nonlinear everywhere+constraint)

W(F) = W(F,\) = W(F, curlF)



Energy

» Energy form

~

W(F) = W(F,N\) = /Q We(F)dx 4+ Waefect (A)

» assumptions on W:

» Polyconvexity, i.e., convexity in the minors (in particular det F)
» Bound from below (growth): coercivity in LP
» example: Ogden material

W(F) = all F|P+b| cofF |9 +c | detF |" —d log(detF) + e,
T ) oo, if F g M3



Energy

» Energy form

~

W(F) = W(F,N\) = /Q We(F)dx 4+ Waefect (A)

» assumptions on W:

» Polyconvexity, i.e., convexity in the minors (in particular det F)
» Bound from below (growth): coercivity in LP
» example: Ogden material

W(F) = all F|P+b| cofF |9 +c | detF |" —d log(detF) + e,
T ) oo, if F g M3

» assumptions for Wyegeet (cf. Conti and Garroni, 2014):
> Wdefect(/\[,) = f/_ ¢(9ba T)dHl
» with coercivity and Isc (by relaxation)



MESOSCOPIC SCALE: Physical properties of the
line (1)



MESOSCOPIC SCALE: Physical properties of the
line (2)




Main model object: Currents (intro 1)

» DM(Q) = D(Q; AVR"): C>-differential forms with degree M
with compact support in Q.
» Dy(Q) := D'(; AMR"): M-dimensional currents on Q

» weak convergence:
(T, w) = (T, w)

for every w € DM(Q).



Main model object: Currents (intro 1)

» DM(Q) = D(Q; AVR"): C>-differential forms with degree M
with compact support in Q.
» Dy(Q) := D'(; AMR"): M-dimensional currents on Q

» weak convergence:
(T, w) = (T, w)

for every w € DM(Q).

> [S] € Dm(R™) will denote the currents obtained by integration
on S:

[S](w) = /5 w0, 5)dHM  forweDM(@Q) (1)



Main model object: Currents (intro 2)
» Boundary of a current Dy(Q2) is a current OT € Dy—1(RQ)
defined by

OT(w) = T(dw) for we DM1(Q)

> w=fidxg = dw = 20dx; A dx;



Main model object: Currents (intro 2)

» Boundary of a current Dy(Q2) is a current OT € Dy—1(RQ)
defined by

OT(w) = T(dw) for we DM1(Q)

> w = fids; = dw = SLdx; A dy;
» Mass of a current T € Dy(Q):

|T|:= sup T(w)
weDM(Q),|w|<1

» Other important quantity:

N(T):=|T|+1[0T|



Currents (3): integer-multiplicity currents

» Short notation: T ={S, 7,6}

> Let 7(x) € TS is a simple unit M-vector for HM-a.e. x € S,
6 :S — 7Z be HM-integrable,

> Integer-multiplicity M-current:

T(w) = /5 (w(x), TNOC)IHM(x)  for w e DM(Q)

» Compactness for i.m. currents



Currents (3): integer-multiplicity currents

» Short notation: T ={S, 7,6}

> Let 7(x) € TS is a simple unit M-vector for HM-a.e. x € S,
6 :S — 7Z be HM-integrable,

> Integer-multiplicity M-current:
T(w) = /S (w(x), TNOC)IHM(x)  for w e DM(Q)

» Compactness for i.m. currents
Theorem (Federer 1)

Let {T;} C Dp(Q2) be a sequence of integer multiplicity currents
such that

Ny(T;) < C  forall i and U CC Q,

with C > 0. Then there exist an integer multiplicity current
T € Dm(Q) and a subsequence { Ty(j)}i such that Ty — T
weakly in Q as | — oc.



Currents (4): indecomposability

» An integer-multiplicity current T € Dy (R") is said
indecomposable if there exists no integral current R such that
R#0# T —R and

N(T)=N(R)+ N(T — R)



Currents (4): indecomposability

» An integer-multiplicity current T € Dy (R") is said
indecomposable if there exists no integral current R such that
R#0# T —R and

N(T)=N(R)+ N(T — R)

» Theorem (Federer 2)

» For every integer-multiplicity current T there exists a sequence
of indecomposable integral currents T; such that
T=>>.,Ti and N(T)=> . N(T;).

» Suppose T is an indecomposable integer-multiplicity 1-current
on R". Then there exists a Lipschitz function : R — R" with
Lip(f) < 1s.t.

fL[0,|T|] is injective and T = £[0,|T]].

Moreover OT = 0 if and only if f(0) = (| T|).



Currents (5): Cartesian maps

» Let u € WHP(Q,R"). Graph of u: G, C Q x R" as
Gu i =A{(x,u(x)): x € RyNQ}.

» Graph of u is a rectifiable
> Define: AP(Q,R") := {u € WLP(Q,R3) : M5(Du) €
LP(Q2); Ve, B with |a| + |8] = 3}
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Graph of u is a rectifiable
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Currents (5): Cartesian maps

» Let u € WHP(Q,R"). Graph of u: G, C Q x R" as

Gu i =A{(x,u(x)): x € RyNQ}.

v

Graph of u is a rectifiable

Define: AP(Q,R") := {u € WLP(Q,R3) : M5(Du) €
LP(Q2); Ve, B with |a| + |8] = 3}

Define: Gu(w) = [q(w, G,)dH" G,

CartP(Q,R") := {u € AP(;R") : 0G,L(2 x R") =0}

v

v

v

» Theorem (Compactness)
Let uy € CartP(Q2,R") such that u, —
u  weakly in LP(Q,R"), M2(Duc) — vE  weakly in LP(Q), for
all a, B with || + || = n, then u € CartP(Q,R") and
vZ = MZ(Du)
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» L =73 icren Li (L£i: integer-multiplicity 1-currents).
» L; = b’ € By countable
» A dislocation is a couple L1 := (£, Bz) = {L,7,0,B1}
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Dislocations as currents (1)

v

L =73 icren Li (Li: integer-multiplicity 1-currents).
L; = b’ € By countable
A dislocation is a couple L7 := (£,Bz) = {L,7,0,B1}

An admissible Burgers vectors (or crystallographic):
B:={bc R3:33 € Z3 such that b; = B;b;, for i =1,2,3}
The density of L1 is the linear functional A.:

(Ne,w) = Y Li((wb')*

i€ZCN

v

v

v

v

for every w € C°(Q, R3*3) ((wb)* := wy;bjdx).



Dislocations as currents (1)

» L =73 icren Li (L£i: integer-multiplicity 1-currents).
L; = b’ € By countable
A dislocation is a couple L7 := (£,Bz) = {L,7,0,B1}

An admissible Burgers vectors (or crystallographic):
B:={bc R3:33 € Z3 such that b; = B;b;, for i =1,2,3}
The density of L1 is the linear functional A.:

(Ne,w) = Y Li((wb')*

i€ZCN

v

v

v

v

for every w € C°(Q, R3*3) ((wb)* := wy;bjdx).

Two dislocations £7 and L’ are geometrically equivalent if

v

Ae = Npr.

v

Geometric necessary dislocation set L* is the support of Ap



Regular dislocations

» Origin of a dislocation: nucleation as a simple loops + time
evolution

» generator loop is submitted to forces (self and
Peach-Kaohler)= move, interact, disapear or form clusters
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Regular dislocations

» Origin of a dislocation: nucleation as a simple loops + time
evolution

» generator loop is submitted to forces (self and
Peach-Kaohler)= move, interact, disapear or form clusters

» for each b € B, a b-dislocation current is an integral 1-current

L such that:
CurlF = —AJ,

> Regular dislocation: £ =3, 5 L"
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Canonical dislocation:
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L=L1+ Ls+ L3 with A =Ap



Canonical projections

» L can be dense (L # L)
> the support of £ and the support of A are not equal

» ... one needs a canonical form ---

v

Projections on the crystallocraphic basis: b = (31, 52, 83) and
L0 = {LP, °, 36"}

Li=J L0 0= sa(r)8i0” = L= {L7.0)

beB beB

Canonical dislocation:

v

L=L1+ Ls+ L3 with A =Ap

L] < CIALl may



Class of admissible deformations

EXISTENCE RESULT FOR

inf W(F,\z), 2
(F,/\L)IQFXMD ( L) ( )
—CurlF:/\E

ADMISSIBLE CLASS

F:={(F,L) € LP(Q,R>3) x MD : F satisfies (i)-(iii) below}
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Class of admissible deformations

EXISTENCE RESULT FOR

inf W(F,\z), 2
(F,/\L)IQFXMD ( L) ( )
—CurlF:/\E

ADMISSIBLE CLASS
F ={(F,L) € LP(Q,R33) x MD : F satisfies (i)-(iii) below}

(i) The dislocation current £ = {L, 7,0} satisfies the boundary
condition and there exists F € LP({, R3*3) with FLQ = F

such that —curlF = /\E in Q.
(i) det F > 0 almost everywhere in Q.
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Existence result for mesoscopic dislocations

W(F,Ag) = /Q Wa(F)dx + Waeees(Az) >
CIMF)ler + IAz]) = B

(W1) We(F) > h(det F), for a continuous real function h such that
h(t) > occast—0

(W2) W, is polyconvex: W, = g(M(F)), with g convex
(W3) Waeteet == [, ¥(0b, 7)dH? is weakly lower semicontinuous.

SUFFICIENT CONDITIONS TO APPLY THE DIRECT
METHOD
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Main difficulties for the proof

» The direct method: OK (provided series of lemmas)
» The difficult part: convergence of the minors
» Let up € Ay(Q,R3) s.t. ux — u e LP(Q,T3)
> Avg € LP(Q) s.t. M5 (Duy) — vf
> when do: u € A,(Q,R3) and v? = M2 (Du)???
» ANSWER 1: v Cartesian map in a ball away from £ AND
compactness of £ (Miiller & Palombaro and SVG 1)

» ANSWER 2:
M(9G,,) < C < 00

(see SCALA talk)



Thank you for the attention!



