Continuity Results and Compactness Tools for Integral Functionals over $B V\left(\Omega ; \mathbb{R}^{m}\right)$

Giles Shaw
CCA, University of Cambridge

gwhs2@cam.ac.uk

August 1, 2014

函图 UNIVERSITY OF CAMBRIDGE

An Extension Problem

Problem (De Giorgi)

What is the 'right' way to extend the functional

$$
\mathcal{F}[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x, \quad u \in W^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)
$$

to the space $B V\left(\Omega ; \mathbb{R}^{m}\right)$?

An Extension Problem

Problem (De Giorgi)

What is the 'right' way to extend the functional

$$
\mathcal{F}[u]:=\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x, \quad u \in W^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)
$$

to the space $B V\left(\Omega ; \mathbb{R}^{m}\right)$?
Motivated by the Direct Method for problems with linear growth:

- If $|f(x, y, A)| \geq C|A|-B$, minimising sequences to \mathcal{F} are only compact in $B V\left(\Omega ; \mathbb{R}^{m}\right)$, not $W^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$.
- For a good existence theory: need to make sense of $\mathcal{F}[u]$ for $u \in B V\left(\Omega ; \mathbb{R}^{m}\right)$.

$B V\left(\Omega ; \mathbb{R}^{m}\right)$ and Recession Functions

$B V\left(\Omega ; \mathbb{R}^{m}\right)$ and Recession Functions

- $B V\left(\Omega ; \mathbb{R}^{m}\right):=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{m}\right): D u \in \mathbf{M}\left(\Omega ; \mathbb{R}^{m \times d}\right)\right\}$.
- Can decompose

$$
D u=\overbrace{\nabla u \mathcal{L}^{d}}^{\text {Classical part }}+\underbrace{D^{s} u}_{\text {Singular part }}, \quad D^{s} u=\overbrace{D^{j} u+D^{c} u}^{\text {Jump part }+ \text { Cantor part }} \text {. }
$$

- $\left|D^{j} u\right|=\left|u^{+}-u^{-}\right| \mathcal{H}^{d-1}, \quad \mathcal{H}^{d-1} \ll\left|D^{c} u\right| \ll \mathcal{L}^{d}$.

$B V\left(\Omega ; \mathbb{R}^{m}\right)$ and Recession Functions

- $B V\left(\Omega ; \mathbb{R}^{m}\right):=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{m}\right): D u \in \mathbf{M}\left(\Omega ; \mathbb{R}^{m \times d}\right)\right\}$.
- Can decompose

$$
=\overbrace{\nabla u \mathcal{L}^{d}}^{\text {Classical part }}+\underbrace{D^{s} u}_{\text {Singular part }}, \quad D^{s} u=\overbrace{D^{j} u+D^{c} u}^{\text {Jump part }+ \text { Cantor part }}
$$

- $\left|D^{j} u\right|=\left|u^{+}-u^{-}\right| \mathcal{H}^{d-1}, \quad \mathcal{H}^{d-1} \ll\left|D^{c} u\right| \ll \mathcal{L}^{d}$.
- Define the interpolant

$$
u^{\theta}(x):= \begin{cases}\theta u^{+}(x)+(1-\theta) u^{-}(x) & \text { if } x \text { is a jump point of } u \\ u(x) & \text { otherwise }\end{cases}
$$

$B V\left(\Omega ; \mathbb{R}^{m}\right)$ and Recession Functions

- $B V\left(\Omega ; \mathbb{R}^{m}\right):=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{m}\right): D u \in \mathbf{M}\left(\Omega ; \mathbb{R}^{m \times d}\right)\right\}$.
- Can decompose

$$
=\overbrace{\nabla u \mathcal{L}^{d}}^{\text {Classical part }}+\underbrace{D^{s} u}_{\text {Singular part }}, \quad D^{s} u=\overbrace{D^{j} u+D^{c} u}^{\text {Jump part }+ \text { Cantor part }}
$$

- $\left|D^{j} u\right|=\left|u^{+}-u^{-}\right| \mathcal{H}^{d-1}, \quad \mathcal{H}^{d-1} \ll\left|D^{c} u\right| \ll \mathcal{L}^{d}$.
- Define the interpolant

$$
u^{\theta}(x):= \begin{cases}\theta u^{+}(x)+(1-\theta) u^{-}(x) & \text { if } x \text { is a jump point of } u \\ u(x) & \text { otherwise }\end{cases}
$$

- If it exists, define the recession function

$$
f^{\infty}(x, y, A):=\lim _{\substack{\left(x^{\prime}, y^{\prime}, A^{\prime}\right) \rightarrow(x, y, A) \\ t \rightarrow \infty}} \frac{f\left(x^{\prime}, y^{\prime}, t A^{\prime}\right)}{t}
$$

The Scalar Case

$-W^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$ is weak* dense in $B V\left(\Omega ; \mathbb{R}^{m}\right)$, so, for $u \in B V\left(\Omega ; \mathbb{R}^{m}\right)$, define

$$
\mathcal{F}[u] \equiv \mathcal{F}_{* *}[u]:=\inf \left\{\liminf _{j} \mathcal{F}\left[u_{j}\right]:\left(u_{j}\right) \subset W^{1,1}, u_{j} \stackrel{*}{\rightharpoonup} u \text { in } B V\right\}
$$

$-\mathcal{F}_{* *}$ is the weak* relaxation of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

The Scalar Case

$-W^{1,1}\left(\Omega ; \mathbb{R}^{m}\right)$ is weak* dense in $B V\left(\Omega ; \mathbb{R}^{m}\right)$, so, for $u \in B V\left(\Omega ; \mathbb{R}^{m}\right)$, define

$$
\mathcal{F}[u] \equiv \mathcal{F}_{* *}[u]:=\inf \left\{\liminf _{j} \mathcal{F}\left[u_{j}\right]:\left(u_{j}\right) \subset W^{1,1}, u_{j} \stackrel{*}{\rightharpoonup} u \text { in } B V\right\}
$$

$-\mathcal{F}_{* *}$ is the weak* relaxation of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-(Dal Maso '80) If $m=1$ and $f(x, y, \cdot)$ is convex, can obtain the integral representation

$$
\mathcal{F}_{* *}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \underbrace{\int_{0}^{1} f^{\infty}(x, u^{\theta}, \overbrace{\frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}}^{\text {Jump direction at } x .} \mathrm{d} \theta}_{\text {Average of } f_{0}^{\infty} \text { over all values of } u \text { between jump points. }} \mathrm{d}\left|D^{s} u\right|(x) .
$$

-Also true for $m>1$ if $f=f(x, A)$ and $f(x, \cdot)$ is quasiconvex.

The Vector Valued Case

(Fonseca \& Müller '93) If $m>1$ and $f(x, y, \cdot)$ is quasiconvex,

$$
\begin{aligned}
\mathcal{F}_{* *}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x & +\int_{\Omega} K\left(x, u^{+}, u^{-}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right) \mathrm{d}\left|D^{j} u\right|(x) \\
& +\int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{~d} D^{c} u}{\mathrm{~d}\left|D^{c} u\right|}\right) \mathrm{d}\left|D^{c} u\right|(x)
\end{aligned}
$$

In general, no explicit form for K (cell representation).

The Vector Valued Case

(Fonseca \& Müller '93) If $m>1$ and $f(x, y, \cdot)$ is quasiconvex,

$$
\begin{aligned}
\mathcal{F}_{* *}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} & +\int_{\Omega} K\left(x, u^{+}, u^{-}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right) \mathrm{d}\left|D^{j} u\right|(x) \\
& +\int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{~d} D^{c} u}{\mathrm{~d}\left|D^{c} u\right|}\right) \mathrm{d}\left|D^{c} u\right|(x)
\end{aligned}
$$

In general, no explicit form for K (cell representation).

- Results so far require convexity/quasiconvexity assumptions:
- Some applications cannot assume this.
- Relationship with f not clear in this case: in what sense is this an extension?

The Vector Valued Case

(Fonseca \& Müller '93) If $m>1$ and $f(x, y, \cdot)$ is quasiconvex,

$$
\begin{aligned}
\mathcal{F}_{* *}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} & +\int_{\Omega} K\left(x, u^{+}, u^{-}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right) \mathrm{d}\left|D^{j} u\right|(x) \\
& +\int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{~d} D^{c} u}{\mathrm{~d}\left|D^{c} u\right|}\right) \mathrm{d}\left|D^{c} u\right|(x)
\end{aligned}
$$

In general, no explicit form for K (cell representation).

- Results so far require convexity/quasiconvexity assumptions:
- Some applications cannot assume this.
- Relationship with f not clear in this case: in what sense is this an extension?
- Requires other boundedness/continuity assumptions.
- Could another extension of $\int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x$ admit more recovery sequences?

Idea: Is there a topology on $B V\left(\Omega ; \mathbb{R}^{m}\right)$ with respect to which we can continuously extend $u \mapsto \int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x$?

Idea: Is there a topology on $B V\left(\Omega ; \mathbb{R}^{m}\right)$ with respect to which we can continuously extend $u \mapsto \int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x$?

Definition

We say that $u_{j} \rightarrow u$ area-strictly in $B V\left(\Omega ; \mathbb{R}^{m}\right)$ if $u_{j} \rightarrow u$ in $L^{1}\left(\Omega ; \mathbb{R}^{m}\right)$ and

$$
\int_{\Omega} \sqrt{1+\left|\nabla u_{j}\right|^{2}} \mathrm{~d} x+\left|D^{s} u_{j}\right|(\Omega) \rightarrow \int_{\Omega} \sqrt{1+|\nabla u|^{2}} \mathrm{~d} x+\left|D^{s} u\right|(\Omega)
$$

-Each $u \in B V\left(\Omega ; \mathbb{R}^{m}\right)$ can be approximated area-strictly by sequences in $C^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$ (in particular, by mollifiers).

Idea: Is there a topology on $B V\left(\Omega ; \mathbb{R}^{m}\right)$ with respect to which we can continuously extend $u \mapsto \int_{\Omega} f(x, u(x), \nabla u(x)) \mathrm{d} x$?

Definition

We say that $u_{j} \rightarrow u$ area-strictly in $B V\left(\Omega ; \mathbb{R}^{m}\right)$ if $u_{j} \rightarrow u$ in $L^{1}\left(\Omega ; \mathbb{R}^{m}\right)$ and

$$
\int_{\Omega} \sqrt{1+\left|\nabla u_{j}\right|^{2}} \mathrm{~d} x+\left|D^{s} u_{j}\right|(\Omega) \rightarrow \int_{\Omega} \sqrt{1+|\nabla u|^{2}} \mathrm{~d} x+\left|D^{s} u\right|(\Omega)
$$

-Each $u \in B V\left(\Omega ; \mathbb{R}^{m}\right)$ can be approximated area-strictly by sequences in $C^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$ (in particular, by mollifiers).

Assumptions on f :

Assume that $f: \Omega \times \mathbb{R}^{m} \times M^{m \times d} \rightarrow \mathbb{R}$ is Carathéodory and satisfies

- $|f(x, y, A)| \leq C\left(1+|y|^{p}+|A|\right)$ for $p \in[1, d /(d-1)]$.
- $f^{\infty}(x, y, A)$ exists and is continuous \mathcal{H}^{d-1}-almost everywhere.
-Optimal hypotheses to ensure that $\mathcal{F}[u]<\infty$.

New Result I

New Result I

Theorem (Rindler and S., '13)

The functional

$$
\mathcal{F}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right) \mathrm{d} \theta \mathrm{~d}\left|D^{s} u\right|(x)
$$

is area-strictly continuous on $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-Hence, the only 'reasonable' extension of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

New Result I

Theorem (Rindler and S., '13)

The functional

$$
\mathcal{F}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right) \mathrm{d} \theta \mathrm{~d}\left|D^{s} u\right|(x)
$$

is area-strictly continuous on $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-Hence, the only 'reasonable' extension of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

- No quasiconvexity/convexity assumptions.

New Result I

Theorem (Rindler and S., '13)

The functional

$$
\mathcal{F}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right) \mathrm{d} \theta \mathrm{~d}\left|D^{s} u\right|(x)
$$

is area-strictly continuous on $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-Hence, the only 'reasonable' extension of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on $f: d /(d-1)$ growth in y is optimal and surprising (in fact, false for $d=1$).

New Result I

Theorem (Rindler and S., '13)

The functional

$$
\mathcal{F}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right) \mathrm{d} \theta \mathrm{~d}\left|D^{s} u\right|(x)
$$

is area-strictly continuous on $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-Hence, the only 'reasonable' extension of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on $f: d /(d-1)$ growth in y is optimal and surprising (in fact, false for $d=1$).
- Regularity assumptions in x on f, f^{∞} are optimal (counterexamples).

New Result I

Theorem (Rindler and S., '13)

The functional

$$
\mathcal{F}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right) \mathrm{d} \theta \mathrm{~d}\left|D^{s} u\right|(x)
$$

is area-strictly continuous on $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-Hence, the only 'reasonable' extension of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on $f: d /(d-1)$ growth in y is optimal and surprising (in fact, false for $d=1$).
- Regularity assumptions in x on f, f^{∞} are optimal (counterexamples).
- $K\left(x, u^{+}, u^{-}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right)=\int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right) \mathrm{d} \theta$ is explicitly identified, even when $m>1$.

New Result I

Theorem (Rindler and S., '13)

The functional

$$
\mathcal{F}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right) \mathrm{d} \theta \mathrm{~d}\left|D^{s} u\right|(x)
$$

is area-strictly continuous on $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-Hence, the only 'reasonable' extension of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on $f: d /(d-1)$ growth in y is optimal and surprising (in fact, false for $d=1$).
- Regularity assumptions in x on f, f^{∞} are optimal (counterexamples).
- $K\left(x, u^{+}, u^{-}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right)=\int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right) \mathrm{d} \theta$ is explicitly identified, even when $m>1$.
- If $f(x, y, \cdot)$ is convex, can use proof techniques to provide a new, easy proof that $\mathcal{F}=\mathcal{F}_{* *}$.

New Result I

Theorem (Rindler and S., '13)

The functional

$$
\mathcal{F}[u]=\int_{\Omega} f(x, u, \nabla u) \mathrm{d} x+\int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{s} u}{\mathrm{~d}\left|D^{s} u\right|}\right) \mathrm{d} \theta \mathrm{~d}\left|D^{s} u\right|(x)
$$

is area-strictly continuous on $B V\left(\Omega ; \mathbb{R}^{m}\right)$.
-Hence, the only 'reasonable' extension of \mathcal{F} to $B V\left(\Omega ; \mathbb{R}^{m}\right)$.

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on $f: d /(d-1)$ growth in y is optimal and surprising (in fact, false for $d=1$).
- Regularity assumptions in x on f, f^{∞} are optimal (counterexamples).
- $K\left(x, u^{+}, u^{-}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right)=\int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d} D^{j} u}{\mathrm{~d}\left|D^{j} u\right|}\right) \mathrm{d} \theta$ is explicitly identified, even when $m>1$.
- If $f(x, y, \cdot)$ is convex, can use proof techniques to provide a new, easy proof that $\mathcal{F}=\mathcal{F}_{* *}$.

Proof strategy:

- Prove for bounded, 1-homogenous f via construction of a special measure in $\mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; M^{m \times d}\right)$,

$$
\mu[u]:=\left(\int_{0}^{1} \delta_{u^{\theta}(x)} \mathrm{d} \theta\right) \otimes D u
$$

and Reshetnyak's Continuity Theorem.

- Remove 1-homogeneity assumption by using area-strict convergence + perspective integrand construction.
- Remove boundedness assumption by an approximation argument.

Proof strategy:

- Prove for bounded, 1-homogenous f via construction of a special measure in $\mathbf{M}\left(\Omega \times \mathbb{R}^{m} ; M^{m \times d}\right)$,

$$
\mu[u]:=\left(\int_{0}^{1} \delta_{u^{\theta}(x)} \mathrm{d} \theta\right) \otimes D u
$$

and Reshetnyak's Continuity Theorem.

- Remove 1-homogeneity assumption by using area-strict convergence + perspective integrand construction.
- Remove boundedness assumption by an approximation argument. For $p=d / d-1$, the approximation argument relies on the following concentration compactness lemma, which is of independent interest:

Lemma (P.L. Lions, '85)
Let $u_{j}, u \in B V\left(\Omega ; \mathbb{R}^{m}\right)$ be such that $u_{j} \rightarrow u$ in $L^{1}, D u_{j} \stackrel{*}{\rightharpoonup} D u$ and $\left|D u_{j}\right|(\Omega) \rightarrow|D u|(\Omega)$. Then $u_{j} \rightarrow u$ in $L^{d / d-1}$.

Lower Semicontinuity

Lower Semicontinuity

- Next task: Find out how to ensure lower semicontinuity of \mathcal{F} :

$$
\underset{j}{\liminf } \mathcal{F}\left[u_{j}\right] \geq \mathcal{F}[u], \quad u_{j} \stackrel{*}{\rightharpoonup} u .
$$

\Rightarrow Need a way of computing/representing $\mathrm{w}^{*}-\lim _{j} \mathcal{F}\left[u_{j}\right]$.

Lower Semicontinuity

- Next task: Find out how to ensure lower semicontinuity of \mathcal{F} :

$$
\underset{j}{\liminf } \mathcal{F}\left[u_{j}\right] \geq \mathcal{F}[u], \quad u_{j} \stackrel{*}{\rightharpoonup} u .
$$

\Rightarrow Need a way of computing/representing $\mathrm{w}^{*}-\lim _{j} \mathcal{F}\left[u_{j}\right]$.

- Big idea: View $\left(u_{j}\right)$ as a family of linear functionals on f :
\Rightarrow Compactness from functional analysis implies \exists a limit functional $\boldsymbol{\nu}_{u}$ such that $\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle=\lim _{j} \mathcal{F}\left[u_{j}\right]$ for all 'reasonable' f.

Lower Semicontinuity

- Next task: Find out how to ensure lower semicontinuity of \mathcal{F} :

$$
\underset{j}{\liminf } \mathcal{F}\left[u_{j}\right] \geq \mathcal{F}[u], \quad u_{j} \stackrel{*}{\rightharpoonup} u .
$$

\Rightarrow Need a way of computing/representing $\mathrm{w}^{*}-\lim _{j} \mathcal{F}\left[u_{j}\right]$.

- Big idea: View $\left(u_{j}\right)$ as a family of linear functionals on f :
\Rightarrow Compactness from functional analysis implies \exists a limit functional $\boldsymbol{\nu}_{u}$ such that $\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle=\lim _{j} \mathcal{F}\left[u_{j}\right]$ for all 'reasonable' f.
- New task: What does ν_{u} look like?

Lower Semicontinuity

- Next task: Find out how to ensure lower semicontinuity of \mathcal{F} :

$$
\underset{j}{\liminf } \mathcal{F}\left[u_{j}\right] \geq \mathcal{F}[u], \quad u_{j} \stackrel{*}{\rightharpoonup} u .
$$

\Rightarrow Need a way of computing/representing $\mathrm{w}^{*}-\lim _{j} \mathcal{F}\left[u_{j}\right]$.

- Big idea: View $\left(u_{j}\right)$ as a family of linear functionals on f :
\Rightarrow Compactness from functional analysis implies \exists a limit functional $\boldsymbol{\nu}_{u}$ such that $\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle=\lim _{j} \mathcal{F}\left[u_{j}\right]$ for all 'reasonable' f.
- New task: What does ν_{u} look like?
-A sequence $\left(u_{j}\right)$ can only fail to converge area-strictly if $\left(D u_{j}\right)$ exhibits either oscillation and/or concentration phenomenon:

Generalised Young Measures

Generalised Young Measures

-An X-measure valued map is a (measurable) function $\nu_{x}: \bar{\Omega} \rightarrow \mathbf{M}^{1}(X)$.

Generalised Young Measures

-An X-measure valued map is a (measurable) function $\nu_{x}: \bar{\Omega} \rightarrow \mathbf{M}^{1}(X)$. -A (generalised) Young measure is a triple

$$
\boldsymbol{\nu}:=\left(\nu_{x}, \nu_{x}^{\infty}, \lambda_{\nu}\right),
$$

where

- ν_{x} is an $\mathbb{R}^{m} \times \mathbb{R}^{m \times d}$-measure valued map,
- ν_{x}^{∞} is an $\left(\mathbb{R}^{m} \uplus \partial \mathbb{B}^{m}\right) \times \partial \mathbb{B}^{m \times d}$-measure valued map,
- $\lambda_{\nu} \in \mathbf{M}^{+}(\bar{\Omega})$.

Generalised Young Measures

-An X-measure valued map is a (measurable) function $\nu_{x}: \bar{\Omega} \rightarrow \mathbf{M}^{1}(X)$. -A (generalised) Young measure is a triple

$$
\boldsymbol{\nu}:=\left(\nu_{x}, \nu_{x}^{\infty}, \lambda_{\nu}\right),
$$

where

- ν_{x} is an $\mathbb{R}^{m} \times \mathbb{R}^{m \times d}$-measure valued map,
- ν_{x}^{∞} is an $\left(\mathbb{R}^{m} \uplus \partial \mathbb{B}^{m}\right) \times \partial \mathbb{B}^{m \times d}$-measure valued map,
- $\lambda_{\nu} \in \mathbf{M}^{+}(\bar{\Omega})$.
-Need to account for when $|u(x)| \rightarrow \infty,|\nabla u(x)| \rightarrow \infty$: Extend f^{∞} to $\left(\mathbb{R}^{m} \uplus \partial \mathbb{B}^{m}\right) \times \partial \mathbb{B}^{m \times d}$ by

$$
f^{\infty}(x, y, A)=\lim _{s \rightarrow \infty} f^{\infty}(x, s y, A) \text { for }(y, A) \in \partial \mathbb{B}^{m} \times \partial \mathbb{B}^{m \times d}
$$

Generalised Young Measures

-An X-measure valued map is a (measurable) function $\nu_{x}: \bar{\Omega} \rightarrow \mathbf{M}^{1}(X)$. -A (generalised) Young measure is a triple

$$
\boldsymbol{\nu}:=\left(\nu_{x}, \nu_{x}^{\infty}, \lambda_{\nu}\right),
$$

where

- ν_{x} is an $\mathbb{R}^{m} \times \mathbb{R}^{m \times d}$-measure valued map,
- ν_{x}^{∞} is an $\left(\mathbb{R}^{m} \uplus \partial \mathbb{B}^{m}\right) \times \partial \mathbb{B}^{m \times d}$-measure valued map,
- $\lambda_{\nu} \in \mathbf{M}^{+}(\bar{\Omega})$.
-Need to account for when $|u(x)| \rightarrow \infty,|\nabla u(x)| \rightarrow \infty$: Extend f^{∞} to $\left(\mathbb{R}^{m} \uplus \partial \mathbb{B}^{m}\right) \times \partial \mathbb{B}^{m \times d}$ by

$$
f^{\infty}(x, y, A)=\lim _{s \rightarrow \infty} f^{\infty}(x, s y, A) \text { for }(y, A) \in \partial \mathbb{B}^{m} \times \partial \mathbb{B}^{m \times d}
$$

-Young measures act as a functionals on f as follows:
$\langle\langle f, \boldsymbol{\nu}\rangle\rangle:=\int f(x, y, A) \mathrm{d} \nu_{x}(y, A) \mathrm{d} x+\int f^{\infty}(x, y, A) \mathrm{d} \nu_{x}^{\infty}(y, A) \mathrm{d} \lambda_{\nu}(x)$.

Figure: $u_{j}(x)=-1 / j \cos (j x)$

Figure: $\nabla u_{j}(x)=\sin (j x)$

Figure: $u_{j}(x)=-1 / j \cos (j x)$

Figure: $\nabla u_{j}(x)=\sin (j x)$

$$
\nu_{x}(y, A)=\delta_{0}(y) \otimes \frac{1}{\pi \sqrt{1-A^{2}}} \mathrm{~d} A\left\llcorner[-1,1], \lambda_{\nu}=0 .\right.
$$

Figure: $u_{j}(x)=\frac{j}{2 \pi} \mathbb{1}_{\mathbb{D}}\left(j x_{1}, j x_{2}\right)$

Figure: $D u_{j}(x)=\frac{j}{2 \pi} x \mathcal{H}^{1}\left\llcorner\mathbb{S}\left(0, \frac{1}{j}\right)\right.$

Figure: $u_{j}(x)=\frac{j}{2 \pi} \mathbb{1}_{\mathbb{D}}\left(j x_{1}, j x_{2}\right)$

Figure: $D u_{j}(x)=\frac{j}{2 \pi} x \mathcal{H}^{1}\left\llcorner\mathbb{S}\left(0, \frac{1}{j}\right)\right.$

$$
\nu_{x}(y, A)=\delta_{0}(y) \otimes \delta_{0}(A),
$$

$$
\lambda_{\nu}(x)=\delta_{0}(x), \quad \nu_{x}^{\infty}(y, A)=\delta_{+1}(y) \otimes\left(\frac{x}{2 \pi} \mathcal{H}^{1}\left\llcorner\mathbb{S}^{1}\right)(A) .\right.
$$

New Result II

New Result II

Theorem (Rindler and S., '14)

Let $\left(u_{j}\right) \subset B V\left(\Omega ; \mathbb{R}^{m}\right)$ be a norm bounded sequence. Then there exists a Young measure $\boldsymbol{\nu}_{u}$ and a (non relabelled) subsequence of (u_{j}) such that

$$
\mathcal{F}\left[u_{j}\right] \rightarrow\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle \text { as } j \rightarrow \infty
$$

for every continuous f which satisfies $|f(x, y, A)| \leq C\left(1+|y|^{p}+|A|\right)$ for some $p \in[1, d /(d-1))$ and is such that (the extended) f^{∞} exists.

New Result II

Theorem (Rindler and S., '14)

Let $\left(u_{j}\right) \subset B V\left(\Omega ; \mathbb{R}^{m}\right)$ be a norm bounded sequence. Then there exists a Young measure $\boldsymbol{\nu}_{u}$ and a (non relabelled) subsequence of $\left(u_{j}\right)$ such that

$$
\mathcal{F}\left[u_{j}\right] \rightarrow\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle \text { as } j \rightarrow \infty
$$

for every continuous f which satisfies $|f(x, y, A)| \leq C\left(1+|y|^{p}+|A|\right)$ for some $p \in[1, d /(d-1))$ and is such that (the extended) f^{∞} exists.

- Can now find a minimising sequence for which we can identify/compute $\lim _{j} \mathcal{F}\left[u_{j}\right]$.
- Analysing $\boldsymbol{\nu}_{u}$ and $\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle$ (Jensen type inequalities) should lead to the right conditions on f for lower semicontinuity (quasiconvexity).

New Result II

Theorem (Rindler and S., '14)

Let $\left(u_{j}\right) \subset B V\left(\Omega ; \mathbb{R}^{m}\right)$ be a norm bounded sequence. Then there exists a Young measure $\boldsymbol{\nu}_{u}$ and a (non relabelled) subsequence of (u_{j}) such that

$$
\mathcal{F}\left[u_{j}\right] \rightarrow\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle \text { as } j \rightarrow \infty
$$

for every continuous f which satisfies $|f(x, y, A)| \leq C\left(1+|y|^{p}+|A|\right)$ for some $p \in[1, d /(d-1))$ and is such that (the extended) f^{∞} exists.

- Can now find a minimising sequence for which we can identify/compute $\lim _{j} \mathcal{F}\left[u_{j}\right]$.
- Analysing $\boldsymbol{\nu}_{u}$ and $\left\langle\left\langle f, \boldsymbol{\nu}_{u}\right\rangle\right\rangle$ (Jensen type inequalities) should lead to the right conditions on f for lower semicontinuity (quasiconvexity).
-Thank you for listening!

