# Continuity Results and Compactness Tools for Integral Functionals over $BV(\Omega; \mathbb{R}^m)$

Giles Shaw

CCA, University of Cambridge

gwhs2@cam.ac.uk

August 1, 2014







Engineering and Physical Sciences Research Council

#### Problem (De Giorgi)

What is the 'right' way to extend the functional

$$\mathcal{F}[u] := \int_{\Omega} f(x, u(x), \nabla u(x)) \, \mathrm{d}x, \qquad u \in W^{1,1}(\Omega; \mathbb{R}^m),$$

to the space  $BV(\Omega; \mathbb{R}^m)$ ?

#### Problem (De Giorgi)

What is the 'right' way to extend the functional

$$\mathcal{F}[u] := \int_{\Omega} f(x, u(x), \nabla u(x)) \, \mathrm{d}x, \qquad u \in W^{1,1}(\Omega; \mathbb{R}^m),$$

to the space  $BV(\Omega; \mathbb{R}^m)$ ?

Motivated by the **Direct Method** for problems with linear growth:

- If  $|f(x, y, A)| \ge C|A| B$ , minimising sequences to  $\mathcal{F}$  are only compact in  $BV(\Omega; \mathbb{R}^m)$ , not  $W^{1,1}(\Omega; \mathbb{R}^m)$ .
- For a good existence theory: need to make sense of  $\mathcal{F}[u]$  for  $u\in BV(\Omega;\mathbb{R}^m).$

# $\underline{BV}(\Omega;\mathbb{R}^m)$ and Recession Functions

# $BV(\Omega; \mathbb{R}^m)$ and Recession Functions

- $BV(\Omega; \mathbb{R}^m) := \{ u \in L^1(\Omega; \mathbb{R}^m) : Du \in \mathbf{M}(\Omega; \mathbb{R}^{m \times d}) \}.$
- Can decompose



# $BV(\Omega; \mathbb{R}^m)$ and Recession Functions

- $BV(\Omega; \mathbb{R}^m) := \{ u \in L^1(\Omega; \mathbb{R}^m) : Du \in \mathbf{M}(\Omega; \mathbb{R}^{m \times d}) \}.$
- Can decompose



$$u^{\theta}(x) := \begin{cases} \theta u^{+}(x) + (1-\theta)u^{-}(x) & \text{if } x \text{ is a jump point of } u, \\ u(x) & \text{otherwise.} \end{cases}$$

# $BV(\Omega; \mathbb{R}^m)$ and Recession Functions

- $BV(\Omega; \mathbb{R}^m) := \{ u \in L^1(\Omega; \mathbb{R}^m) : Du \in \mathbf{M}(\Omega; \mathbb{R}^{m \times d}) \}.$
- Can decompose



$$u^{\theta}(x) := \begin{cases} \frac{\theta u^{+}(x) + (1 - \theta)u^{-}(x)}{u(x)} & \text{if } x \text{ is a jump point of } u, \\ u(x) & \text{otherwise.} \end{cases}$$

• If it exists, define the recession function

$$f^{\infty}(x,y,A) := \lim_{\substack{(x',y',A') \to (x,y,A) \\ t \to \infty}} \frac{f(x',y',tA')}{t}.$$

 $-W^{1,1}(\Omega;\mathbb{R}^m)$  is weak\* dense in  $BV(\Omega;\mathbb{R}^m)$ , so, for  $u \in BV(\Omega;\mathbb{R}^m)$ , define

$$\mathcal{F}[u] \equiv \mathcal{F}_{**}[u] := \inf \left\{ \liminf_{j} \mathcal{F}[u_j] : (u_j) \subset W^{1,1}, u_j \stackrel{*}{\rightharpoonup} u \text{ in } BV \right\}.$$

 $-\mathcal{F}_{**}$  is the weak\* relaxation of  $\mathcal{F}$  to  $BV(\Omega; \mathbb{R}^m)$ .

 $-W^{1,1}(\Omega;\mathbb{R}^m)$  is weak\* dense in  $BV(\Omega;\mathbb{R}^m)$ , so, for  $u\in BV(\Omega;\mathbb{R}^m)$ , define

$$\mathcal{F}[u] \equiv \mathcal{F}_{**}[u] := \inf \left\{ \liminf_{j} \mathcal{F}[u_j] : (u_j) \subset W^{1,1}, u_j \stackrel{*}{\rightharpoonup} u \text{ in } BV \right\}.$$

 $-\mathcal{F}_{**}$  is the weak\* relaxation of  $\mathcal{F}$  to  $BV(\Omega; \mathbb{R}^m)$ . -(Dal Maso '80) If m = 1 and  $f(x, y, \cdot)$  is convex, can obtain the integral representation

$$\mathcal{F}_{**}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \underbrace{\int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \underbrace{\frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}}\right) \mathrm{d}\theta}_{\text{Average of } f^{\infty} \text{ over all values of } u \text{ between jump points}}$$

-Also true for m > 1 if f = f(x, A) and  $f(x, \cdot)$  is **quasiconvex**.

#### The Vector Valued Case

(Fonseca & Müller '93) If m>1 and  $f(x,y,\cdot)$  is quasiconvex,

$$\begin{aligned} \mathcal{F}_{**}[u] &= \int_{\Omega} f\left(x, u, \nabla u\right) \, \mathrm{d}x + \int_{\Omega} K\left(x, u^{+}, u^{-}, \frac{\mathrm{d}D^{j}u}{\mathrm{d}|D^{j}u|}\right) \, \mathrm{d}|D^{j}u|(x) \\ &+ \int_{\Omega} f^{\infty}\left(x, u, \frac{\mathrm{d}D^{c}u}{\mathrm{d}|D^{c}u|}\right) \, \mathrm{d}|D^{c}u|(x). \end{aligned}$$

In general, no explicit form for K (cell representation).

#### The Vector Valued Case

(Fonseca & Müller '93) If m>1 and  $f(x,y,\cdot)$  is quasiconvex,

$$\begin{split} \mathcal{F}_{**}[u] &= \int_{\Omega} f\left(x, u, \nabla u\right) \, \mathrm{d}x + \int_{\Omega} K\left(x, u^{+}, u^{-}, \frac{\mathrm{d}D^{j}u}{\mathrm{d}|D^{j}u|}\right) \, \mathrm{d}|D^{j}u|(x) \\ &+ \int_{\Omega} f^{\infty} \bigg(x, u, \frac{\mathrm{d}D^{c}u}{\mathrm{d}|D^{c}u|}\bigg) \, \mathrm{d}|D^{c}u|(x). \end{split}$$

In general, no explicit form for K (cell representation).

- Results so far require convexity/quasiconvexity assumptions:
  - Some applications cannot assume this.
  - Relationship with f not clear in this case: in what sense is this an extension?

#### The Vector Valued Case

(Fonseca & Müller '93) If m>1 and  $f(x,y,\cdot)$  is quasiconvex,

$$\begin{split} \mathcal{F}_{**}[u] &= \int_{\Omega} f\left(x, u, \nabla u\right) \, \mathrm{d}x + \int_{\Omega} K\left(x, u^{+}, u^{-}, \frac{\mathrm{d}D^{j}u}{\mathrm{d}|D^{j}u|}\right) \, \mathrm{d}|D^{j}u|(x) \\ &+ \int_{\Omega} f^{\infty} \bigg(x, u, \frac{\mathrm{d}D^{c}u}{\mathrm{d}|D^{c}u|}\bigg) \, \mathrm{d}|D^{c}u|(x). \end{split}$$

In general, no explicit form for K (cell representation).

- Results so far require convexity/quasiconvexity assumptions:
  - Some applications cannot assume this.
  - Relationship with f not clear in this case: in what sense is this an extension?
- Requires other boundedness/continuity assumptions.
- Could another extension of  $\int_\Omega f(x,u(x),\nabla u(x))\;\mathrm{d} x$  admit more recovery sequences?

**Idea:** Is there a topology on  $BV(\Omega; \mathbb{R}^m)$  with respect to which we can **continuously** extend  $u \mapsto \int_{\Omega} f(x, u(x), \nabla u(x)) \, dx$ ?

**Idea:** Is there a topology on  $BV(\Omega; \mathbb{R}^m)$  with respect to which we can **continuously** extend  $u \mapsto \int_{\Omega} f(x, u(x), \nabla u(x)) dx$ ?

#### Definition

We say that  $u_j \to u$  area-strictly in  $BV(\Omega; \mathbb{R}^m)$  if  $u_j \to u$  in  $L^1(\Omega; \mathbb{R}^m)$ and

$$\int_{\Omega} \sqrt{1 + |\nabla u_j|^2} \,\mathrm{d}x + |D^s u_j|\left(\Omega\right) \to \int_{\Omega} \sqrt{1 + |\nabla u|^2} \,\mathrm{d}x + |D^s u|\left(\Omega\right).$$

-Each  $u \in BV(\Omega; \mathbb{R}^m)$  can be approximated area-strictly by sequences in  $C^{\infty}(\Omega; \mathbb{R}^m)$  (in particular, by mollifiers).

**Idea:** Is there a topology on  $BV(\Omega; \mathbb{R}^m)$  with respect to which we can **continuously** extend  $u \mapsto \int_{\Omega} f(x, u(x), \nabla u(x)) dx$ ?

#### Definition

We say that  $u_j \to u$  area-strictly in  $BV(\Omega; \mathbb{R}^m)$  if  $u_j \to u$  in  $L^1(\Omega; \mathbb{R}^m)$ and

$$\int_{\Omega} \sqrt{1 + |\nabla u_j|^2} \, \mathrm{d}x + |D^s u_j|\left(\Omega\right) \to \int_{\Omega} \sqrt{1 + |\nabla u|^2} \, \mathrm{d}x + |D^s u|\left(\Omega\right).$$

-Each  $u \in BV(\Omega; \mathbb{R}^m)$  can be approximated area-strictly by sequences in  $C^{\infty}(\Omega; \mathbb{R}^m)$  (in particular, by mollifiers).

#### Assumptions on f:

Assume that  $f: \Omega \times \mathbb{R}^m \times M^{m \times d} \to \mathbb{R}$  is Carathéodory and satisfies

• 
$$|f(x, y, A)| \le C(1 + |y|^p + |A|)$$
 for  $p \in [1, d/(d-1)]$ .

•  $f^{\infty}(x, y, A)$  exists and is continuous  $\mathcal{H}^{d-1}$ -almost everywhere.

-Optimal hypotheses to ensure that  $\mathcal{F}[u] < \infty.$ 

Giles Shaw (Cambridge)

#### Theorem (Rindler and S., '13)

The functional

$$\mathcal{F}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) \, \mathrm{d}\theta \, \mathrm{d}|D^{s}u|(x)$$

is area-strictly continuous on  $BV(\Omega; \mathbb{R}^m)$ .

#### Theorem (Rindler and S., '13)

The functional

$$\mathcal{F}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) \, \mathrm{d}\theta \, \mathrm{d}|D^{s}u|(x)$$

is a rea-strictly continuous on  $BV(\Omega; \mathbb{R}^m)$ .

-Hence, the only 'reasonable' extension of  $\mathcal{F}$  to  $BV(\Omega; \mathbb{R}^m)$ .

• No quasiconvexity/convexity assumptions.

#### Theorem (Rindler and S., '13)

The functional

$$\mathcal{F}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) \, \mathrm{d}\theta \, \mathrm{d}|D^{s}u|(x)$$

is area-strictly continuous on  $BV(\Omega; \mathbb{R}^m)$ .

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on f: d/(d-1) growth in y is optimal and surprising (in fact, false for d = 1).

#### Theorem (Rindler and S., '13)

The functional

$$\mathcal{F}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) \, \mathrm{d}\theta \, \mathrm{d}|D^{s}u|(x)$$

is area-strictly continuous on  $BV(\Omega; \mathbb{R}^m)$ .

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on f: d/(d-1) growth in y is optimal and surprising (in fact, false for d = 1).
- Regularity assumptions in x on f,  $f^{\infty}$  are optimal (counterexamples).

#### Theorem (Rindler and S., '13)

The functional

$$\mathcal{F}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) \, \mathrm{d}\theta \, \mathrm{d}|D^{s}u|(x)$$

is area-strictly continuous on  $BV(\Omega; \mathbb{R}^m)$ .

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on f: d/(d-1) growth in y is optimal and surprising (in fact, false for d = 1).
- Regularity assumptions in x on f,  $f^{\infty}$  are optimal (counterexamples).
- $K(x, u^+, u^-, \frac{\mathrm{d}D^j u}{\mathrm{d}|D^j u|}) = \int_0^1 f^\infty(x, u^\theta, \frac{\mathrm{d}D^j u}{\mathrm{d}|D^j u|}) \mathrm{d}\theta$  is explicitly identified, even when m > 1.

#### Theorem (Rindler and S., '13)

The functional

$$\mathcal{F}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) \, \mathrm{d}\theta \, \mathrm{d}|D^{s}u|(x)$$

is area-strictly continuous on  $BV(\Omega; \mathbb{R}^m)$ .

-Hence, the only 'reasonable' extension of  $\mathcal{F}$  to  $BV(\Omega; \mathbb{R}^m)$ .

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on f: d/(d-1) growth in y is optimal and surprising (in fact, false for d = 1).
- Regularity assumptions in x on f,  $f^{\infty}$  are optimal (counterexamples).
- $K(x, u^+, u^-, \frac{\mathrm{d}D^j u}{\mathrm{d}|D^j u|}) = \int_0^1 f^\infty(x, u^\theta, \frac{\mathrm{d}D^j u}{\mathrm{d}|D^j u|}) \mathrm{d}\theta$  is explicitly identified, even when m > 1.
- If  $f(x, y, \cdot)$  is convex, can use proof techniques to provide a new, easy proof that  $\mathcal{F} = \mathcal{F}_{**}$ .

Giles Shaw (Cambridge)

#### Theorem (Rindler and S., '13)

The functional

$$\mathcal{F}[u] = \int_{\Omega} f(x, u, \nabla u) \, \mathrm{d}x + \int_{\Omega} \int_{0}^{1} f^{\infty}\left(x, u^{\theta}, \frac{\mathrm{d}D^{s}u}{\mathrm{d}|D^{s}u|}\right) \, \mathrm{d}\theta \, \mathrm{d}|D^{s}u|(x)$$

is area-strictly continuous on  $BV(\Omega; \mathbb{R}^m)$ .

-Hence, the only 'reasonable' extension of  $\mathcal{F}$  to  $BV(\Omega; \mathbb{R}^m)$ .

- No quasiconvexity/convexity assumptions.
- Natural growth assumptions on f: d/(d-1) growth in y is optimal and surprising (in fact, false for d = 1).
- Regularity assumptions in x on f,  $f^{\infty}$  are optimal (counterexamples).
- $K(x, u^+, u^-, \frac{\mathrm{d}D^j u}{\mathrm{d}|D^j u|}) = \int_0^1 f^\infty(x, u^\theta, \frac{\mathrm{d}D^j u}{\mathrm{d}|D^j u|}) \mathrm{d}\theta$  is explicitly identified, even when m > 1.
- If  $f(x, y, \cdot)$  is convex, can use proof techniques to provide a new, easy proof that  $\mathcal{F} = \mathcal{F}_{**}$ .

Giles Shaw (Cambridge)

Proof strategy:

• Prove for bounded, 1-homogenous f via construction of a special measure in  $\mathbf{M}(\Omega \times \mathbb{R}^m; M^{m \times d})$ ,

$$\mu[u] := \left(\int_0^1 \delta_{u^\theta(x)} \,\mathrm{d}\theta\right) \otimes Du,$$

and Reshetnyak's Continuity Theorem.

- Remove 1-homogeneity assumption by using area-strict convergence + perspective integrand construction.
- Remove boundedness assumption by an approximation argument.

Proof strategy:

• Prove for bounded, 1-homogenous f via construction of a special measure in  $\mathbf{M}(\Omega \times \mathbb{R}^m; M^{m \times d})$ ,

$$\mu[u] := \left(\int_0^1 \delta_{u^{\theta}(x)} \, \mathrm{d}\theta\right) \otimes Du,$$

and Reshetnyak's Continuity Theorem.

- Remove 1-homogeneity assumption by using area-strict convergence + perspective integrand construction.
- Remove boundedness assumption by an approximation argument.

For p = d/d - 1, the approximation argument relies on the following concentration compactness lemma, which is of independent interest:

#### Lemma (P.L. Lions, '85)

Let  $u_j, u \in BV(\Omega; \mathbb{R}^m)$  be such that  $u_j \to u$  in  $L^1$ ,  $Du_j \stackrel{*}{\to} Du$  and  $|Du_j|(\Omega) \to |Du|(\Omega)$ . Then  $u_j \to u$  in  $L^{d/d-1}$ .

• Next task: Find out how to ensure lower semicontinuity of  $\mathcal{F}$ :

$$\liminf_{j} \mathcal{F}[u_j] \ge \mathcal{F}[u], \qquad u_j \stackrel{*}{\rightharpoonup} u.$$

 $\Rightarrow$  Need a way of computing/representing w\*-lim<sub>j</sub>  $\mathcal{F}[u_j]$ .

• Next task: Find out how to ensure lower semicontinuity of  $\mathcal{F}$ :

$$\liminf_{j} \mathcal{F}[u_j] \ge \mathcal{F}[u], \qquad u_j \stackrel{*}{\rightharpoonup} u.$$

 $\Rightarrow$  Need a way of computing/representing w\*-lim<sub>j</sub>  $\mathcal{F}[u_j]$ .

• Big idea: View  $(u_j)$  as a family of linear functionals on f:  $\Rightarrow$  Compactness from functional analysis implies  $\exists$  a limit functional  $\nu_u$ such that  $\langle\!\langle f, \nu_u \rangle\!\rangle = \lim_j \mathcal{F}[u_j]$  for all 'reasonable' f.

• Next task: Find out how to ensure lower semicontinuity of  $\mathcal{F}$ :

$$\liminf_{j} \mathcal{F}[u_j] \ge \mathcal{F}[u], \qquad u_j \stackrel{*}{\rightharpoonup} u.$$

 $\Rightarrow$  Need a way of computing/representing w\*-lim<sub>j</sub>  $\mathcal{F}[u_j]$ .

- Big idea: View (u<sub>j</sub>) as a family of linear functionals on f:
  ⇒ Compactness from functional analysis implies ∃ a limit functional ν<sub>u</sub> such that ⟨⟨f, ν<sub>u</sub>⟩⟩ = lim<sub>j</sub> F[u<sub>j</sub>] for all 'reasonable' f.
- New task: What does  $\boldsymbol{\nu}_u$  look like?

• Next task: Find out how to ensure lower semicontinuity of  $\mathcal{F}$ :

$$\liminf_{j} \mathcal{F}[u_j] \ge \mathcal{F}[u], \qquad u_j \stackrel{*}{\rightharpoonup} u.$$

 $\Rightarrow$  Need a way of computing/representing w\*-lim<sub>j</sub>  $\mathcal{F}[u_j]$ .

- Big idea: View (u<sub>j</sub>) as a family of linear functionals on f:
  ⇒ Compactness from functional analysis implies ∃ a limit functional ν<sub>u</sub> such that ⟨⟨f, ν<sub>u</sub>⟩⟩ = lim<sub>j</sub> F[u<sub>j</sub>] for all 'reasonable' f.
- New task: What does  $\boldsymbol{\nu}_u$  look like?

-A sequence  $(u_j)$  can only fail to converge area-strictly if  $(Du_j)$  exhibits either oscillation and/or concentration phenomenon:



9/13

-An X-measure valued map is a (measurable) function  $\nu_x \colon \overline{\Omega} \to \mathbf{M}^1(X)$ .

-An X-measure valued map is a (measurable) function  $\nu_x \colon \overline{\Omega} \to \mathbf{M}^1(X)$ . -A (generalised) Young measure is a triple

 $\boldsymbol{\nu} := (\boldsymbol{\nu}_x, \boldsymbol{\nu}_x^{\infty}, \boldsymbol{\lambda}_{\nu}),$ 

where

•  $\nu_x$  is an  $\mathbb{R}^m \times \mathbb{R}^{m \times d}$ -measure valued map, •  $\nu_x^{\infty}$  is an  $(\mathbb{R}^m \uplus \partial \mathbb{B}^m) \times \partial \mathbb{B}^{m \times d}$ -measure valued map, •  $\lambda_{\nu} \in \mathbf{M}^+(\overline{\Omega})$ .

-An X-measure valued map is a (measurable) function  $\nu_x \colon \overline{\Omega} \to \mathbf{M}^1(X)$ . -A (generalised) Young measure is a triple

 $\boldsymbol{\nu} := (\boldsymbol{\nu}_x, \boldsymbol{\nu}_x^{\infty}, \boldsymbol{\lambda}_{\nu}),$ 

where

- $\nu_x$  is an  $\mathbb{R}^m imes \mathbb{R}^{m imes d}$ -measure valued map,
- $\nu_x^{\infty}$  is an  $(\mathbb{R}^m \uplus \partial \mathbb{B}^m) \times \partial \mathbb{B}^{m \times d}$ -measure valued map, •  $\lambda_{\nu} \in \mathbf{M}^+(\overline{\Omega})$ .

-Need to account for when  $|u(x)| \to \infty$ ,  $|\nabla u(x)| \to \infty$ : Extend  $f^{\infty}$  to  $(\mathbb{R}^m \uplus \partial \mathbb{B}^m) \times \partial \mathbb{B}^{m \times d}$  by

$$f^{\infty}(x, y, A) = \lim_{s \to \infty} f^{\infty}(x, sy, A) \text{ for } (y, A) \in \partial \mathbb{B}^m \times \partial \mathbb{B}^{m \times d}.$$

-An X-measure valued map is a (measurable) function  $\nu_x \colon \overline{\Omega} \to \mathbf{M}^1(X)$ . -A (generalised) Young measure is a triple

 $\boldsymbol{\nu} := (\nu_x, \nu_x^\infty, \lambda_\nu),$ 

where

•  $\nu_x$  is an  $\mathbb{R}^m imes \mathbb{R}^{m imes d}$ -measure valued map,

•  $\nu_x^{\infty}$  is an  $(\mathbb{R}^m \uplus \partial \mathbb{B}^m) \times \partial \mathbb{B}^{m \times d}$ -measure valued map, •  $\lambda_{\nu} \in \mathbf{M}^+(\overline{\Omega})$ .

-Need to account for when  $|u(x)| \to \infty$ ,  $|\nabla u(x)| \to \infty$ : Extend  $f^{\infty}$  to  $(\mathbb{R}^m \uplus \partial \mathbb{B}^m) \times \partial \mathbb{B}^{m \times d}$  by

$$f^{\infty}(x, y, A) = \lim_{s \to \infty} f^{\infty}(x, sy, A) \text{ for } (y, A) \in \partial \mathbb{B}^m \times \partial \mathbb{B}^{m \times d}$$

-Young measures act as a functionals on f as follows:

$$\left\langle\!\left\langle f, \boldsymbol{\nu}\right\rangle\!\right\rangle := \int\limits_{\Omega \times \mathbb{R}^m \times \mathbb{R}^{m \times d}} f(x, y, A) \, \mathrm{d}\nu_x(y, A) \, \mathrm{d}x + \int\limits_{\overline{\Omega} \times (\mathbb{R}^m \uplus \partial \mathbb{B}^m) \times \partial \mathbb{B}^{m \times d}} f^\infty\left(x, y, A\right) \, \mathrm{d}\nu_x^\infty(y, A) \, \mathrm{d}\lambda_\nu(x).$$

Figure: 
$$u_j(x) = -1/j\cos(jx)$$



Figure: 
$$u_j(x) = -1/j\cos(jx)$$











#### Theorem (Rindler and S., '14)

Let  $(u_j) \subset BV(\Omega; \mathbb{R}^m)$  be a norm bounded sequence. Then there exists a Young measure  $\nu_u$  and a (non relabelled) subsequence of  $(u_j)$  such that

$$\mathcal{F}[u_j] o \left\langle\!\!\left\langle f, \boldsymbol{\nu}_u \right\rangle\!\!\right\rangle$$
 as  $j \to \infty$ 

for every continuous f which satisfies  $|f(x, y, A)| \leq C(1 + |y|^p + |A|)$  for some  $p \in [1, d/(d-1))$  and is such that (the extended)  $f^{\infty}$  exists.

#### Theorem (Rindler and S., '14)

Let  $(u_j) \subset BV(\Omega; \mathbb{R}^m)$  be a norm bounded sequence. Then there exists a Young measure  $\nu_u$  and a (non relabelled) subsequence of  $(u_j)$  such that

$$\mathcal{F}[u_j] o \left\langle\!\!\left\langle f, \boldsymbol{\nu}_u \right\rangle\!\!\right\rangle$$
 as  $j \to \infty$ 

for every continuous f which satisfies  $|f(x, y, A)| \leq C(1 + |y|^p + |A|)$  for some  $p \in [1, d/(d-1))$  and is such that (the extended)  $f^{\infty}$  exists.

- Can now find a minimising sequence for which we can identify/compute  $\lim_{j} \mathcal{F}[u_{j}]$ .
- Analysing  $\nu_u$  and  $\langle\!\langle f, \nu_u \rangle\!\rangle$  (Jensen type inequalities) should lead to the right conditions on f for lower semicontinuity (quasiconvexity).

#### Theorem (Rindler and S., '14)

Let  $(u_j) \subset BV(\Omega; \mathbb{R}^m)$  be a norm bounded sequence. Then there exists a Young measure  $\nu_u$  and a (non relabelled) subsequence of  $(u_j)$  such that

$$\mathcal{F}[u_j] o \left\langle\!\!\left\langle f, \boldsymbol{\nu}_u \right\rangle\!\!\right\rangle$$
 as  $j \to \infty$ 

for every continuous f which satisfies  $|f(x, y, A)| \leq C(1 + |y|^p + |A|)$  for some  $p \in [1, d/(d-1))$  and is such that (the extended)  $f^{\infty}$  exists.

- Can now find a minimising sequence for which we can identify/compute  $\lim_{j} \mathcal{F}[u_{j}]$ .
- Analysing  $\nu_u$  and  $\langle\!\langle f, \nu_u \rangle\!\rangle$  (Jensen type inequalities) should lead to the right conditions on f for lower semicontinuity (quasiconvexity).

-Thank you for listening!