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Introduction

We want to solve the minimum problem

min
(F ,L)∈A

W(F ,ΛL) =We(F ) +Wdefect(ΛL), (1)

where A is the space of admissible couples of deformations and dislocation currents.

If Fn ∈ Lp(Ω,R3×3) is a minimizing sequence, the policonvexity of We requires

Mβ
ᾱ(Fn) ⇀ Mβ

ᾱ(F ) weakly in Lp(Ω), (2)

for all multiindeces α, β such that |α|+ |β| = 3.
To prove this we have to focus on the finer properties of the functions Fn, using the
fact that

−Curl Fn = ΛT
Ln ,

for a bounded sequence of densities ΛLn .
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ᾱ(Fn) ⇀ Mβ
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Introduction

Consider a function F ∈ Lp(Ω,R3×3) satisfying

−Curl F = b ⊗ L,

for some dislocation (closed integral 1-current) L. Since the Burgers vector b belongs
to the lattice Z3 and L has integer multiplicity, whenever γ is a lipschitz closed curve,
the path integral of F along γ turns out to be an element of Z3. We can then define
GLOBALLY a deformation u whose gradient is F and whose value is univocally given
up to an element of Z3.

In other words it is well-defined

u ∈W 1,p(Ω,T3),

T3 being the 3-dimensional torus R3/Z3.
To prove convergence (2) we will use the fact that if un ∈W 1,p(Ω,T3) are such that
their graphs Gun satisfies M(∂Gun ) < C then there exists u ∈W 1,p(Ω,T3) with (up to
a subsequence)

Mβ
ᾱ(Dun) ⇀ Mβ

ᾱ(Du) weakly in Lp(Ω),

for all α, β, |α|+ |β| = 3.
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Preliminaries

We introduce the torus T ∼= R/ ∼, where a ∼ b iff a − b ∈ Z, and the standard
projection πT : R→ T. Now we will consider graphs of maps u : Ω→ Tn. These turn
out to be n-rectifiable currents in Ω× Tn.

We set

Dn(Ω× Tn) := {ω ∈ Dn(Ω× Rn) : 1− periodic in the 2nd variable}.

If T is a n-current in Dn(Ω× Rn) that has compact support in Ω̄× Rn, then it is
well-defined the current T (T ) ∈ Dn(Ω× Tn) defined as

T (T ) := TxDn(Ω×Tn). (3)

Moreover M(T (T )) ≤ M(T ).
Let u ∈ Ap(Ω,Rn), then we define T (u) : Ω→ Rn by T (u) := πT (u). It is easily seen
that T (Gu) is a n-rectifiable current in Ω× Tn.

Definition

Ap(Ω,Tn) := {u ∈ Lp(Ω,Tn) : u is approx. diff. a.e. on Ω, and

Mβ
ᾱ(Du) ∈ Lp(Ω) for all |α|+ |β| = n} (4)

u ∈ Ap(Ω,Tn)⇒ Gu is a n-rectifiable current in Ω× Tn.
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Preliminary results

Lemma

Let C be a smooth closed and simple curve in Ω and let S be a smooth surface in Ω
bounded by C with unit normal N. The solution (up to a harmonic map on R3) of∆u = 0 in R3 \ S

[u] := u+ − u− = b on S
[∂N u] := ∂N u+ − ∂N u− = 0 on S

(5)

is given by

u(x) = −b
∫

S
∂N Γ(x ′ − x)dS(x ′), (6)

for x ∈ R3 \ S, where Γ is the solution in R3 of ∆Γ = δ0.

Moreover we can prove that there exists a constant γ > 0 independent of C and Ω,
such that the solution u of (5) satisfies

|∂i u(x)| ≤ γ
b

d(x ,C)
. (7)
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Preliminary results

As a consequence of Lemma 5:

Lemma

Let b ∈ Z. Then the solution u of (5) belongs to C∞(Ω \ C ,T) and it is harmonic in
Ω \ C.

We consider a tubular neighborhood U of the curve C where we can use cylindrical
coordinates and S coinciding with θ = 0. We need this result of approximation:

Lemma

Let C and S as above and let u be the solution of the elliptic problem∆u = 0 on R3 \ S
u+ − u− = 1 on S
∂+

N u − ∂−N u = 0 on S.
. (8)

Then for all (ρ, θ, z) ∈ U with θ 6= 0 there exists the limit limε→0+ u(ερ, θ, z) = θ + c,
where c is a fixed arbitrary constant.
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Computation of the boundary

We denote by {e1, e2, e3, ε1, ε2, ε3} the basis of Ω× R3.

Theorem

Let b = (b1, b2, b3) ∈ Z3 and let u = (u1, u2, u3) : Ω→ R3 with ui satisfying the
equation (5) with b = bi . Then Gu is the integral current in D3(Ω× T3) and its
boundary is given by

∂Gu(ω) = −4πL ⊗ b(ϕω ◦ Φ), (9)

for all ω ∈ D2(Ω× T3), where Φ := Id × u and ϕω is defined componentwise as

ϕωαβ := 〈ω, eα ∧ εβ〉. (10)

with α, β ∈ {1, 2, 3}.

In words, ϕω represents the tensor of the coefficients of the mixed components of ω.



Computation of the boundary

We procede by approximation. We set Ωε := Ω \ D̄ε, uε := uxΩε , where
Dε := {(ρ, θ, z) ∈ U : ρ < ε}. It is easy to see that Guε ⇀ Gu as current, so that we
have

∂Guε ⇀ ∂Gu .

uε is smooth in Ωε (Lemma 3) so we apply the Stokes theorem to compute the
boundary of Guε . For all 2-forms ω we have

∂Guε (ω) =

∫
∂Dε

〈ω ◦ Φ,
∂Φ

∂τ
∧
∂Φ

∂x3
〉dx =

∫
∂Dε

σijωij (x , u(x))M i
j (D(Φx∂Dε (x)))dx ,

where (τ, x3) is an orthogonal coordinate system in the tangent space to ∂Dε = ∂Ωε.
Explicitly

=

∫
∂Dε

ω23(x , u(x))dx +

3∑
k=1

∫ 2π

0

∫ l

0
ε(ω̃2k (ε, θ, x3, u(ε, θ, x3))

∂uk
∂x3

(ε, θ, x3)dx3dθ

−
3∑

k=1

∫ l

0

∫ 2π

0
εω̃3k (ε, θ, x3, u(ε, θ, x3))

∂uk
∂τ

(ε, θ, x3))dθdx3. (11)
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Computation of the boundary

Integrations by parts and preceding lemmas provide

3∑
k=1

∫ 2π

0
ε

∫ l

0
(
∂ω̃2k
∂x3

(ε, θ, x3, u(ε, θ, x3))uk (ε, θ, x3)dx3dθ =

3∑
k=1

∫ 2π

0
ε

∫ l

0
(
∂ω̃2k
∂x3

(ε, θ, x3, u(ε, θ, x3))(θ + o(1))dx3dθ,

where o(1)→ 0 as ε→ 0, so that its absolute value can be estimated by
‖ ∂ω̃2k
∂x3
‖∞o(ε), and thus also this term vanishes.

As for the third term

= −
3∑

k=1

∫ l

0
ω̃3k (0, θ, x3, b1θ, b2θ, b3θ)uk (ε, θ, x3)

∣∣∣θ=2π

0
dx3

+

3∑
k=1

∫ l

0

∫ 2π

0

d
dθ
ω̃3k (0, θ, x3, b1θ, b2θ, b3θ)uk (ε, θ, x3))dθdx3 + R(ε). (12)

with R(ε) = o(1).
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We then pass to the limit

−
3∑

k=1

(
2πbkω3k (0, 0, x3, 0, 0, 0) +

∫ l

0

∫ 2π

0

d
dθ
ω̃3k (0, 0, x3, b1θ, b2θ, b3θ)bkθdθdx3

)
= −4π

3∑
k=1

bk

∫ l

0
ω3k (0, 0, x3, b1θ, b2θ, b3θ)dx3

= −4π
∫

C
(τ(x)⊗ b) · ϕω(x , u(x))dH1(x) = −4πL ⊗ b(ϕω ◦ Φ),

and the proof is completed.

Moreover Theorem 5 can be generalized to an arbitrary closed integral 1-current L,
and it also holds

Lemma

Let S, C, b and u as in Theorem 5, and let v ∈ C1(Ω̄,R3). Then Gu+v is an integral
current in D3(Ω× T3) and it holds

M(∂Gu+v ) ≤ (1 + 24
√

3π‖Dv‖L∞(Ω))|L ⊗ b|(Ω). (13)
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The minimum problem

Let us go back to the minimum problem

min
(F ,L)∈A

W(F ,ΛL), (14)

where the energy W satisfies some appropriate convexity and coerciveness conditions
(Van Goethem seminar), while A is the space of admissible couples of deformations
and dislocation currents.

For the minimizer we want to be satisfied the equilibrium condition:

−Div CE = f (15)

where f is an external force acting on the elastic body, E := 1
2 (F T F − Id) is the Green

St. Venant strain, and C :=
∂2We

∂Fij∂Fkl
its associate elasticity tensor. Note that

fi = −
∂2We

∂Fij∂Fkl
∂j Fkl and hence f ⊗ I = CDiv F .

We assume that We is smooth enough and that the material has finite compliance,
that is, C−1 is finite. Moreover, for simplicity of discussion (but not of the model) we
will assume Cijkl = δijδkl . Hence it holds fiδjl = δij ( Div F )k , that is ,

fi = ( Div F )i .
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Existence result

So the class of admissible deformations is defined as follows. Let f ∈ Lq(Ω,R3) and
let b ∈ Z3 a fixed Burgers vector, then

Fb(f ) := {F ∈ Lp(Ω,R3×3) : −Div F = f and − Curl F = b ⊗ L
for some closed integral 1-current L}. (16)

The existence of a minimizer of W in Fb(f ) is provided by the following:

Theorem

Let p > 1 and f ∈ Lq(Ω,R3) with q > 3. If W satisfies (...), then there exists a
minimizer F ∈ Fb(f ) of W.

A consequence of Helmoltz decomposition implies that, if F ∈ Fb(f ), then F can be
written as

F = Dv + Du + Dh,

where v ∈W 2,q
0 (Ω,R3) with ∆v = f , u ∈W 1,p(Ω,T3) is the function in Theorem 5,

and h ∈ C∞(Ω,R3) is an harmonic map on Ω with some boundary conditions. The
Sobolev embeddings Theorem provides v ∈ C1(Ω,R3).
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Sketch of the proof

To prove the existence result, we can use such decomposition for all the terms of a
minimizing sequence Fn = Dvn + Dun + Dhn. The coerciveness of the energy We gives
a-priori bounds on the Lp norms of all the minors of Dvn, Dun, and Dhn, while the
coerciveness of Wdefect gives an a-priori bound on the mass of the densities ΛLn .
In particular there exist F ∈ Lp(Ω,R3×3), A ∈ Lp(Ω,R3×3), and D ∈ Lp(Ω) such that

Fk ⇀ F weakly in Lp(Ω,R3×3), (17a)

adjFk ⇀ A weakly in Lp(Ω,R3×3), (17b)
det Fk ⇀ D weakly in Lp(Ω). (17c)

and a measure Λ ∈Mb(Ω,R3×3) with

Λk ⇀ Λ weakly* in Mb(Ω,R3×3), (18)

where we have set Λk = ΛLk = −Curl Fk

Theorem 5 and Lemma 6 provide

M(∂Gvn+un+hn ) < C ,

thanks to the regularity of vn and hn.
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Sketch of the proof

Then we can employ

Theorem

Let uk be a sequence in Ap(Ω,T3) such that uk → u strongly in Lp(Ω,T3) and
suppose that there exist functions vαβ ∈ Lp(Ω) such that Mβ

ᾱ(Duk ) ⇀ vβα for all
multi-indices α and β with |α|+ |β| = 3. If

M(∂Guk ) < C < +∞ (19)

for all k > 0, then u ∈ Ap(Ω,T3) and vβα = Mβ
ᾱ(Du).

to prove that A = adjF , D = det F .

The fact that there exists a closed integral 1-current L such that Λ = ΛL = −Curl F
is an easy consequence of the compactness theorem for integral currents and of
convergence (18). The conclusion then follows by lower semicontinuity.
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Remarks and open questions

We need the regularity condition of f . In general if u is as in Theorem 5 and v is
another function, it is difficult to obtain estimates for the boundary of Gu+v
better than (13).

We have proved the result for a density Λ of the form L ⊗ b. In particular all the
Burgers vector of the cluster are integer multiple of b. What happens to a cluster
with linearly independent Burgers vectors?

Thank you for attention!
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