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Fn (F,Az) e(F) + Waetect (M) (1)

where A is the space of admissible couples of deformations and dislocation currents.
If Fp € LP(,R3%3) is a minimizing sequence, the policonvexity of We requires

ME(Fy) = ME(F) weakly in  LP(), (2)

for all multiindeces o, 8 such that |a| + |3] = 3.
To prove this we have to focus on the finer properties of the functions Fj, using the
fact that

—Curl F, =A[ |

for a bounded sequence of densities Az, .
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Consider a function F € LP(Q,R3*3) satisfying
—Curl F=b® L,

for some dislocation (closed integral 1-current) £. Since the Burgers vector b belongs
to the lattice Z3 and £ has integer multiplicity, whenever ~ is a lipschitz closed curve,
the path integral of F along ~ turns out to be an element of Z3. We can then define
GLOBALLY a deformation u whose gradient is F and whose value is univocally given
up to an element of Z3.
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for some dislocation (closed integral 1-current) £. Since the Burgers vector b belongs
to the lattice Z3 and £ has integer multiplicity, whenever ~ is a lipschitz closed curve,
the path integral of F along ~ turns out to be an element of Z3. We can then define
GLOBALLY a deformation u whose gradient is F and whose value is univocally given
up to an element of Z3.

In other words it is well-defined

ue WhP(Q,T3),

T3 being the 3-dimensional torus R3/Z3.
To prove convergence (2) we will use the fact that if u, € W1P(Q, T3) are such that
their graphs G, satisfies M(9G,,) < C then there exists u € W1P(Q, T3) with (up to
a subsequence)

Mg(Dun) — I\/Ig(Du) weakly in  LP(Q),

for all o, B, || + |B] = 3.



Preliminaries

We introduce the torus T = R/ ~, where a ~ b iff a— b € Z, and the standard
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projection w7 : R — T. Now we will consider graphs of maps u: Q — T". These turn
out to be n-rectifiable currents in Q x T".

We set

D"(Q2 x T") := {w € D"(2 x R") : 1 — periodic in the 2nd variable}.

If T is a n-current in D,(Q x R") that has compact support in Q x R”, then it is
well-defined the current T(7) € Dp(Q2 x T") defined as

T(T) = Tipnaxtn)- (3)

Moreover M(T(T)) < M(T).
Let u € Ap(2,R"), then we define T(u) : Q — R” by T(u) := w7(u). It is easily seen
that T(Gy.) is a n-rectifiable current in Q x T".

Definition

Ap(Q,T") := {u € LP(Q,T") : u is approx. diff. a.e. on Q, and
ME (Du) € LP(Q) for all |a] + 8] = n} (4)

u € Ap(Q,T") = G, is a n-rectifiable current in Q x T".



Preliminary results

Lemma

Let C be a smooth closed and simple curve in € and let S be a smooth surface in Q
bounded by C with unit normal N. The solution (up to a harmonic map on R3) of

Au=0 in R3\'S
[u]:=uvT—u"=b on S (5)
[Onu] := OyuT — Oyu™ =0 on S
is given by
u(x) = 7b/a,\,r(x’ — x)dS(x’), (6)
S

for x € R3\'S, where I is the solution in R3 of AT = &.
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Au=0 in R3\'S
[u]:=uvT—u"=b on S (5)
[Onu] := OyuT — Oyu™ =0 on S
is given by
u(x) = 7b/a,\,r(x’ — x)dS(x’), (6)
S

for x € R3 \' S, where T is the solution in R3 of AT = §p.

Moreover we can prove that there exists a constant v > 0 independent of C and €,
such that the solution u of (5) satisfies

()| < 17 ™



Preliminary results

As a consequence of Lemma 5:

Let b € Z. Then the solution u of (5) belongs to C>°(Q2\ C,T) and it is harmonic in
Q\ C.




Preliminary results

As a consequence of Lemma 5:

Let b € Z. Then the solution u of (5) belongs to C>°(Q2\ C,T) and it is harmonic in
Q\ C.

We consider a tubular neighborhood U of the curve C where we can use cylindrical
coordinates and S coinciding with @ = 0. We need this result of approximation:

Lemma

Let C and S as above and let u be the solution of the elliptic problem

Au=0 on R3\S
ut —u— =1 on S . (8)
8Eu—8/\_/u:0 on S.

Then for all (p,0,z) € U with 6 # 0 there exists the limit lim__,o+ u(ep,0,z) =0+ c,
where c is a fixed arbitrary constant.




Computation of the boundary

We denote by {e1, €, e3,€1,€2,€3} the basis of Q x R3.

Let b= (b1, by, b3) € Z3 and let u = (u1, up, u3) : Q@ — R3 with u; satisfying the
equation (5) with b = b;. Then G, is the integral current in D3(Q x T3) and its
boundary is given by

OGu(w) = —47L ® b(¢® o P), 9)

for all w € D?(Q x T3), where ® := Id x u and ¢* is defined componentwise as
Pap = (w,ea Neg). (10)

with a, B € {1,2,3}.

In words, ¢“ represents the tensor of the coefficients of the mixed components of w.
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De :={(p,0,z) € U: p < €}. Itis easy to see that G,. — G, as current, so that we
have

aguE — 0G,.
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boundary of G,_. For all 2-forms w we have

ob 0P )
Gy, (w) = / (wo o, o A af>dX = / ajjwij(x, u(x))M; (D(PLap, (x)))dx,
aD, T X3 aD.

where (7, x3) is an orthogonal coordinate system in the tangent space to 9D = 9.
Explicitly

3 27 /
= | wmlouC))dx+ (Gaule,0, 33, u(e,0,33)) 2 (c, 0, x3)dxsdf
oD, = Jo Jo 03

3 / 27
-y €B3k(c,0, 3, (e, 0,35)) 2% (c, 0, x3)) (11)
k=1 ¥0 10 or



Computation of the boundary

Integrations by parts and preceding lemmas provide

3 27 !
o
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k=1 v0 o 9
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where o(1) — 0 as € — 0, so that its absolute value can be estimated by
| LELY
Ix3

[loco(€), and thus also this term vanishes.
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Integrations by parts and preceding lemmas provide

3 27 !
o
E € (—w% (€,0,x3,u(e, 0, x3))uk(e, 6, x3)dx3df =
k=1 v0 o 9

3 27 ! ~
§ € (%(G,Q,X3, u(e, 8, x3))(0 + o(1))dx3do,
k=10 o O

where o(1) — 0 as € — 0, so that its absolute value can be estimated by

| agxzak [loco(€), and thus also this term vanishes.
As for the third term
g ! 6=2m
=-> / @34(0,0,x3, b10, o0, b3O)ui(e, 0,53)|  xs
0
k=1 *0

3 I p2m
d
+E // %®3k(0,9,><3,b19,b297b39)uk(6,9,x3))d9d><3+R(E)~ (12)
k=170 0

with R(e) = o(1).



We then pass to the limit

3 ! 21
d
_ (27Tbkw3k(0,0,X3,0,0,0)+/ / ~5©3(0,0,x3, b1, bao), b39)bk0d9d><3>
k=1 JO JO

3 !
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k=1 /0

= 747r/(7'(x) ® b) - ¥ (x, u(x))dH(x) = —47L @ b(¢p® o ®),
©

and the proof is completed.



We then pass to the limit

& ! 27
d
(27rbkw3k(070,x3707070)+/ / *95)3k(0707><37b19,b297 b39)bk9d9dX3>
k=1 Jo Jo @
3 !
= *47TZ by / w3k (0,0, x3, b16, b26, b36)dxs
k=1 VO

= 747r/(7'(x) ® b) - ¥ (x, u(x))dH(x) = —47L @ b(¢p® o ®),
©

and the proof is completed.
Moreover Theorem 5 can be generalized to an arbitrary closed integral 1-current L,
and it also holds

Let S, C, b and u as in Theorem 5, and let v € C'(Q,R3). Then G, is an integral
current in D3(Q x T3) and it holds

M(8Gu+) < (14 243/37]| D] oo ()£ ® b](9)- (13)
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and dislocation currents.

For the minimizer we want to be satisfied the equilibrium condition:

—DivCE=f (15)

where f is an external force acting on the elastic body, E := %(FTF — Id) is the Green
O2W,

St. Venant strain, and C := ——— its associate elasticity tensor. Note that
OFjj0Fy

02 We
fi = —————0;F dh f®I=CDiv F.
; oF;0Fy « and hence f ® iv

We assume that W, is smooth enough and that the material has finite compliance,
that is, C~1 is finite. Moreover, for simplicity of discussion (but not of the model) we
will assume Cjjy = 6;;0x. Hence it holds f;6; = 6;;( Div F)y, that is ,

fi = (Div F);.



Existence result

So the class of admissible deformations is defined as follows. Let f € L9(Q,R3) and
let b € Z3 a fixed Burgers vector, then

FP(f) :=={F € LP(Q,R®3): —DivF=fand — Curl F=b® L

for some closed integral 1-current L}. (16)



Existence result

So the class of admissible deformations is defined as follows. Let f € L9(Q,R3) and
let b € Z3 a fixed Burgers vector, then

FP(F) :={F € LP(Q,R®*3): —Div F=fand — Curl F=b® L

for some closed integral 1-current L}. (16)

The existence of a minimizer of W in F?(f) is provided by the following:

Let p > 1 and f € LI(Q,R3) with q > 3. If W satisfies (...), then there exists a
minimizer F € Fb(f) of W.




Existence result

So the class of admissible deformations is defined as follows. Let f € L9(Q,R3) and
let b € Z3 a fixed Burgers vector, then

FP(F) :={F € LP(Q,R®*3): —Div F=fand — Curl F=b® L

for some closed integral 1-current L}. (16)

The existence of a minimizer of W in F?(f) is provided by the following:

Let p > 1 and f € LI(Q,R3) with q > 3. If W satisfies (...), then there exists a
minimizer F € Fb(f) of W.

A consequence of Helmoltz decomposition implies that, if F € F?(f), then F can be
written as

F = Dv + Du + Dh,
where v € Woz’q(Q,R3) with Av = f, u € WHP(Q, T3) is the function in Theorem 5,
and h € C*(Q,R3) is an harmonic map on Q with some boundary conditions. The
Sobolev embeddings Theorem provides v € C1(2, R3).



Sketch of the proof

To prove the existence result, we can use such decomposition for all the terms of a
minimizing sequence F, = Dv, + Du, + Dhy,. The coerciveness of the energy W, gives
a-priori bounds on the LP norms of all the minors of Dv,, Du,, and Dh,, while the
coerciveness of Wyefect gives an a-priori bound on the mass of the densities Az, .

In particular there exist F € LP(Q,R3%3), A € LP(Q,R3%3), and D € LP(Q) such that

Fx — F  weakly in LP(Q,R3%3), (17a)
adjFy — A weakly in LP(Q,R3*3), (17b)
det Fr — D weakly in LP(Q). (17¢)

and a measure A € M(Q,R3%3) with
A — N weakly* in My(Q,R3%3), (18)

where we have set Ay = Az, = — Curl Fy
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minimizing sequence F, = Dv, + Du, + Dhy,. The coerciveness of the energy W, gives
a-priori bounds on the LP norms of all the minors of Dv,, Du,, and Dh,, while the
coerciveness of Wyefect gives an a-priori bound on the mass of the densities Az, .

In particular there exist F € LP(Q,R3%3), A € LP(Q,R3%3), and D € LP(Q) such that

Fx — F  weakly in LP(Q,R3%3), (17a)
adjF, = A weakly in LP(Q,R3*3), (17b)
det Fr — D weakly in LP(Q). (17¢)

and a measure A € M(Q,R3%3) with
A — N weakly* in My(Q,R3%3), (18)

where we have set Ay = Az, = — Curl Fy
Theorem 5 and Lemma 6 provide

M(agVn+Un+hn) <C,

thanks to the regularity of v, and hj.



Sketch of the proof

Then we can employ

Theorem
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to prove that A = adjF, D = det F.
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Then we can employ

Theorem

Let uy be a sequence in Ap(Q, T3) such that uy — u strongly in LP(Q,T3) and
suppose that there exist functions vg' € LP(Q) such that Mg(Duk) — V& for all
multi-indices o and 8 with |a| + |8| = 3. If

M(8Gy,) < C < +oo (19)

for all k > 0, then u € Ap(Q,T3) and v/ = MZ (Du).

to prove that A = adjF, D = det F.

The fact that there exists a closed integral 1-current £ such that A = Az = — Curl F
is an easy consequence of the compactness theorem for integral currents and of
convergence (18). The conclusion then follows by lower semicontinuity.
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Thank you for attention!



