Dislocations: geometric and analytic properties (a joint work with N. Van Goethem)

Riccardo Scala

Lisboa
July 31, 2014

Introduction

We want to solve the minimum problem

$$
\begin{equation*}
\min _{(F, \mathcal{L}) \in \mathcal{A}} \mathcal{W}\left(F, \Lambda_{\mathcal{L}}\right)=\mathcal{W}_{e}(F)+\mathcal{W}_{\text {defect }}\left(\Lambda_{\mathcal{L}}\right) \tag{1}
\end{equation*}
$$

where \mathcal{A} is the space of admissible couples of deformations and dislocation currents.

Introduction

We want to solve the minimum problem

$$
\begin{equation*}
\min _{(F, \mathcal{L}) \in \mathcal{A}} \mathcal{W}\left(F, \Lambda_{\mathcal{L}}\right)=\mathcal{W}_{e}(F)+\mathcal{W}_{\text {defect }}\left(\Lambda_{\mathcal{L}}\right) \tag{1}
\end{equation*}
$$

where \mathcal{A} is the space of admissible couples of deformations and dislocation currents. If $F_{n} \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ is a minimizing sequence, the policonvexity of \mathcal{W}_{e} requires

$$
\begin{equation*}
M_{\bar{\alpha}}^{\beta}\left(F_{n}\right) \rightharpoonup M_{\bar{\alpha}}^{\beta}(F) \quad \text { weakly in } \quad L^{p}(\Omega) \tag{2}
\end{equation*}
$$

for all multiindeces α, β such that $|\alpha|+|\beta|=3$.

Introduction

We want to solve the minimum problem

$$
\begin{equation*}
\min _{(F, \mathcal{L}) \in \mathcal{A}} \mathcal{W}\left(F, \Lambda_{\mathcal{L}}\right)=\mathcal{W}_{e}(F)+\mathcal{W}_{\text {defect }}\left(\Lambda_{\mathcal{L}}\right) \tag{1}
\end{equation*}
$$

where \mathcal{A} is the space of admissible couples of deformations and dislocation currents. If $F_{n} \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ is a minimizing sequence, the policonvexity of \mathcal{W}_{e} requires

$$
\begin{equation*}
M_{\bar{\alpha}}^{\beta}\left(F_{n}\right) \rightharpoonup M_{\bar{\alpha}}^{\beta}(F) \quad \text { weakly in } \quad L^{p}(\Omega) \tag{2}
\end{equation*}
$$

for all multiindeces α, β such that $|\alpha|+|\beta|=3$.
To prove this we have to focus on the finer properties of the functions F_{n}, using the fact that

$$
-\operatorname{Curl} F_{n}=\Lambda_{\mathcal{L}_{n}}^{T},
$$

for a bounded sequence of densities $\Lambda_{\mathcal{L}_{n}}$.

Introduction

Consider a function $F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ satisfying

$$
-\operatorname{Curl} F=b \otimes \mathcal{L},
$$

for some dislocation (closed integral 1-current) \mathcal{L}. Since the Burgers vector b belongs to the lattice \mathbb{Z}^{3} and \mathcal{L} has integer multiplicity, whenever γ is a lipschitz closed curve, the path integral of F along γ turns out to be an element of \mathbb{Z}^{3}. We can then define GLOBALLY a deformation u whose gradient is F and whose value is univocally given up to an element of \mathbb{Z}^{3}.

Introduction

Consider a function $F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ satisfying

$$
-\operatorname{Curl} F=b \otimes \mathcal{L},
$$

for some dislocation (closed integral 1-current) \mathcal{L}. Since the Burgers vector b belongs to the lattice \mathbb{Z}^{3} and \mathcal{L} has integer multiplicity, whenever γ is a lipschitz closed curve, the path integral of F along γ turns out to be an element of \mathbb{Z}^{3}. We can then define GLOBALLY a deformation u whose gradient is F and whose value is univocally given up to an element of \mathbb{Z}^{3}.
In other words it is well-defined

$$
u \in W^{1, p}\left(\Omega, \mathbb{T}^{3}\right)
$$

\mathbb{T}^{3} being the 3-dimensional torus $\mathbb{R}^{3} / \mathbb{Z}^{3}$.

Introduction

Consider a function $F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ satisfying

$$
-\operatorname{Curl} F=b \otimes \mathcal{L},
$$

for some dislocation (closed integral 1-current) \mathcal{L}. Since the Burgers vector b belongs to the lattice \mathbb{Z}^{3} and \mathcal{L} has integer multiplicity, whenever γ is a lipschitz closed curve, the path integral of F along γ turns out to be an element of \mathbb{Z}^{3}. We can then define GLOBALLY a deformation u whose gradient is F and whose value is univocally given up to an element of \mathbb{Z}^{3}.
In other words it is well-defined

$$
u \in W^{1, p}\left(\Omega, \mathbb{T}^{3}\right)
$$

\mathbb{T}^{3} being the 3-dimensional torus $\mathbb{R}^{3} / \mathbb{Z}^{3}$.
To prove convergence (2) we will use the fact that if $u_{n} \in W^{1, p}\left(\Omega, \mathbb{T}^{3}\right)$ are such that their graphs $\mathcal{G}_{u_{n}}$ satisfies $M\left(\partial \mathcal{G}_{u_{n}}\right)<C$ then there exists $u \in W^{1, p}\left(\Omega, \mathbb{T}^{3}\right)$ with (up to a subsequence)

$$
M_{\bar{\alpha}}^{\beta}\left(D u_{n}\right) \rightharpoonup M_{\bar{\alpha}}^{\beta}(D u) \quad \text { weakly in } \quad L^{p}(\Omega)
$$

for all $\alpha, \beta,|\alpha|+|\beta|=3$.

Preliminaries

We introduce the torus $\mathbb{T} \cong \mathbb{R} / \sim$, where $a \sim b$ iff $a-b \in \mathbb{Z}$, and the standard projection $\pi_{T}: \mathbb{R} \rightarrow \mathbb{T}$. Now we will consider graphs of maps $u: \Omega \rightarrow \mathbb{T}^{n}$. These turn out to be n-rectifiable currents in $\Omega \times \mathbb{T}^{n}$.

Preliminaries

We introduce the torus $\mathbb{T} \cong \mathbb{R} / \sim$, where $a \sim b$ iff $a-b \in \mathbb{Z}$, and the standard projection $\pi_{T}: \mathbb{R} \rightarrow \mathbb{T}$. Now we will consider graphs of maps $u: \Omega \rightarrow \mathbb{T}^{n}$. These turn out to be n-rectifiable currents in $\Omega \times \mathbb{T}^{n}$.
We set

$$
\mathcal{D}^{n}\left(\Omega \times \mathbb{T}^{n}\right):=\left\{\omega \in \mathcal{D}^{n}\left(\Omega \times \mathbb{R}^{n}\right): 1 \text { - periodic in the } 2 \text { nd variable }\right\} .
$$

If \mathcal{T} is a n-current in $\mathcal{D}_{n}\left(\Omega \times \mathbb{R}^{n}\right)$ that has compact support in $\bar{\Omega} \times \mathbb{R}^{n}$, then it is well-defined the current $T(\mathcal{T}) \in \mathcal{D}_{n}\left(\Omega \times \mathbb{T}^{n}\right)$ defined as

$$
\begin{equation*}
T(\mathcal{T}):=T_{\left\llcorner\mathcal{D}^{n}\left(\Omega \times \mathbb{T}^{n}\right)\right.} . \tag{3}
\end{equation*}
$$

Moreover $M(T(\mathcal{T})) \leq M(\mathcal{T})$.
Let $u \in \mathcal{A}_{p}\left(\Omega, \mathbb{R}^{n}\right)$, then we define $T(u): \Omega \rightarrow \mathbb{R}^{n}$ by $T(u):=\pi_{T}(u)$. It is easily seen that $T\left(\mathcal{G}_{u}\right)$ is a n-rectifiable current in $\Omega \times \mathbb{T}^{n}$.

Preliminaries

We introduce the torus $\mathbb{T} \cong \mathbb{R} / \sim$, where $a \sim b$ iff $a-b \in \mathbb{Z}$, and the standard projection $\pi_{T}: \mathbb{R} \rightarrow \mathbb{T}$. Now we will consider graphs of maps $u: \Omega \rightarrow \mathbb{T}^{n}$. These turn out to be n-rectifiable currents in $\Omega \times \mathbb{T}^{n}$.
We set

$$
\mathcal{D}^{n}\left(\Omega \times \mathbb{T}^{n}\right):=\left\{\omega \in \mathcal{D}^{n}\left(\Omega \times \mathbb{R}^{n}\right): 1 \text { - periodic in the } 2 \text { nd variable }\right\} .
$$

If \mathcal{T} is a n-current in $\mathcal{D}_{n}\left(\Omega \times \mathbb{R}^{n}\right)$ that has compact support in $\bar{\Omega} \times \mathbb{R}^{n}$, then it is well-defined the current $T(\mathcal{T}) \in \mathcal{D}_{n}\left(\Omega \times \mathbb{T}^{n}\right)$ defined as

$$
\begin{equation*}
T(\mathcal{T}):=T_{\left\llcorner\mathcal{D}^{n}\left(\Omega \times \mathbb{T}^{n}\right)\right.} . \tag{3}
\end{equation*}
$$

Moreover $M(T(\mathcal{T})) \leq M(\mathcal{T})$.
Let $u \in \mathcal{A}_{p}\left(\Omega, \mathbb{R}^{n}\right)$, then we define $T(u): \Omega \rightarrow \mathbb{R}^{n}$ by $T(u):=\pi_{T}(u)$. It is easily seen that $T\left(\mathcal{G}_{u}\right)$ is a n-rectifiable current in $\Omega \times \mathbb{T}^{n}$.

Definition

$$
\begin{align*}
\mathcal{A}_{p}\left(\Omega, \mathbb{T}^{n}\right):= & \left\{u \in L^{p}\left(\Omega, \mathbb{T}^{n}\right): u \text { is approx. diff. a.e. on } \Omega,\right. \text { and } \\
& \left.M_{\bar{\alpha}}^{\beta}(D u) \in L^{p}(\Omega) \text { for all }|\alpha|+|\beta|=n\right\} \tag{4}
\end{align*}
$$

$u \in \mathcal{A}_{p}\left(\Omega, \mathbb{T}^{n}\right) \Rightarrow \mathcal{G}_{u}$ is a n-rectifiable current in $\Omega \times \mathbb{T}^{n}$.

Preliminary results

Lemma

Let C be a smooth closed and simple curve in Ω and let S be a smooth surface in Ω bounded by C with unit normal N. The solution (up to a harmonic map on \mathbb{R}^{3}) of

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{3} \backslash S \tag{5}\\ {[u]:=u^{+}-u^{-}=b} & \text { on } S \\ {\left[\partial_{N} u\right]:=\partial_{N} u^{+}-\partial_{N} u^{-}=0} & \text { on } S\end{cases}
$$

is given by

$$
\begin{equation*}
u(x)=-b \int_{S} \partial_{N} \Gamma\left(x^{\prime}-x\right) d S\left(x^{\prime}\right) \tag{6}
\end{equation*}
$$

for $x \in \mathbb{R}^{3} \backslash S$, where Γ is the solution in \mathbb{R}^{3} of $\Delta \Gamma=\delta_{0}$.

Preliminary results

Lemma

Let C be a smooth closed and simple curve in Ω and let S be a smooth surface in Ω bounded by C with unit normal N. The solution (up to a harmonic map on \mathbb{R}^{3}) of

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}^{3} \backslash S \tag{5}\\ {[u]:=u^{+}-u^{-}=b} & \text { on } S \\ {\left[\partial_{N} u\right]:=\partial_{N} u^{+}-\partial_{N} u^{-}=0} & \text { on } S\end{cases}
$$

is given by

$$
\begin{equation*}
u(x)=-b \int_{S} \partial_{N} \Gamma\left(x^{\prime}-x\right) d S\left(x^{\prime}\right) \tag{6}
\end{equation*}
$$

for $x \in \mathbb{R}^{3} \backslash S$, where Γ is the solution in \mathbb{R}^{3} of $\Delta \Gamma=\delta_{0}$.
Moreover we can prove that there exists a constant $\gamma>0$ independent of C and Ω, such that the solution u of (5) satisfies

$$
\begin{equation*}
\left|\partial_{i} u(x)\right| \leq \gamma \frac{b}{d(x, C)} \tag{7}
\end{equation*}
$$

Preliminary results

As a consequence of Lemma 5 :

Lemma

Let $b \in \mathbb{Z}$. Then the solution u of (5) belongs to $C^{\infty}(\Omega \backslash C, \mathbb{T})$ and it is harmonic in $\Omega \backslash C$.

Preliminary results

As a consequence of Lemma 5:

Lemma

Let $b \in \mathbb{Z}$. Then the solution u of (5) belongs to $C^{\infty}(\Omega \backslash C, \mathbb{T})$ and it is harmonic in $\Omega \backslash C$.

We consider a tubular neighborhood U of the curve C where we can use cylindrical coordinates and S coinciding with $\theta=0$. We need this result of approximation:

Lemma

Let C and S as above and let u be the solution of the elliptic problem

$$
\left\{\begin{array}{lll}
\Delta u=0 & \text { on } & \mathbb{R}^{3} \backslash S \tag{8}\\
u^{+}-u^{-}=1 & \text { on } & S \\
\partial_{N}^{+} u-\partial_{N}^{-} u=0 & \text { on } & S
\end{array} .\right.
$$

Then for all $(\rho, \theta, z) \in U$ with $\theta \neq 0$ there exists the limit $\lim _{\epsilon \rightarrow 0^{+}} u(\epsilon \rho, \theta, z)=\theta+c$, where c is a fixed arbitrary constant.

Computation of the boundary

We denote by $\left\{e_{1}, e_{2}, e_{3}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ the basis of $\Omega \times \mathbb{R}^{3}$.

Theorem

Let $b=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{Z}^{3}$ and let $u=\left(u_{1}, u_{2}, u_{3}\right): \Omega \rightarrow \mathbb{R}^{3}$ with u_{i} satisfying the equation (5) with $b=b_{i}$. Then \mathcal{G}_{u} is the integral current in $\mathcal{D}_{3}\left(\Omega \times \mathbb{T}^{3}\right)$ and its boundary is given by

$$
\begin{equation*}
\partial \mathcal{G}_{u}(\omega)=-4 \pi \mathcal{L} \otimes b\left(\varphi^{\omega} \circ \Phi\right) \tag{9}
\end{equation*}
$$

for all $\omega \in \mathcal{D}^{2}\left(\Omega \times \mathbb{T}^{3}\right)$, where $\Phi:=I d \times u$ and φ^{ω} is defined componentwise as

$$
\begin{equation*}
\varphi_{\alpha \beta}^{\omega}:=\left\langle\omega, e_{\alpha} \wedge \varepsilon_{\beta}\right\rangle . \tag{10}
\end{equation*}
$$

with $\alpha, \beta \in\{1,2,3\}$.
In words, φ^{ω} represents the tensor of the coefficients of the mixed components of ω.

Computation of the boundary

We procede by approximation. We set $\Omega_{\epsilon}:=\Omega \backslash \bar{D}_{\epsilon}, u_{\epsilon}:=u\left\llcorner\Omega_{\epsilon}\right.$, where $D_{\epsilon}:=\{(\rho, \theta, z) \in U: \rho<\epsilon\}$. It is easy to see that $\mathcal{G}_{u_{\epsilon}} \rightharpoonup \mathcal{G}_{u}$ as current, so that we have

$$
\partial \mathcal{G}_{u_{\epsilon}} \rightharpoonup \partial \mathcal{G}_{u}
$$

Computation of the boundary

We procede by approximation. We set $\Omega_{\epsilon}:=\Omega \backslash \bar{D}_{\epsilon}, u_{\epsilon}:=u\left\llcorner\Omega_{\epsilon}\right.$, where $D_{\epsilon}:=\{(\rho, \theta, z) \in U: \rho<\epsilon\}$. It is easy to see that $\mathcal{G}_{u_{\epsilon}} \rightharpoonup \mathcal{G}_{u}$ as current, so that we have

$$
\partial \mathcal{G}_{u_{\epsilon}} \rightharpoonup \partial \mathcal{G}_{u} .
$$

u_{ϵ} is smooth in Ω_{ϵ} (Lemma 3) so we apply the Stokes theorem to compute the boundary of $\mathcal{G}_{u_{\epsilon}}$. For all 2 -forms ω we have

$$
\partial \mathcal{G}_{u_{\epsilon}}(\omega)=\int_{\partial D_{\epsilon}}\left\langle\omega \circ \Phi, \frac{\partial \Phi}{\partial \tau} \wedge \frac{\partial \Phi}{\partial x_{3}}\right\rangle d x=\int_{\partial D_{\epsilon}} \sigma_{i j} \omega_{i j}(x, u(x)) M_{j}^{i}\left(D\left(\Phi_{\left\llcorner\partial D_{\epsilon}\right.}(x)\right)\right) d x
$$

where $\left(\tau, x_{3}\right)$ is an orthogonal coordinate system in the tangent space to $\partial D_{\epsilon}=\partial \Omega_{\epsilon}$.

Computation of the boundary

We procede by approximation. We set $\Omega_{\epsilon}:=\Omega \backslash \bar{D}_{\epsilon}, u_{\epsilon}:=u\left\llcorner\Omega_{\epsilon}\right.$, where $D_{\epsilon}:=\{(\rho, \theta, z) \in U: \rho<\epsilon\}$. It is easy to see that $\mathcal{G}_{u_{\epsilon}} \rightharpoonup \mathcal{G}_{u}$ as current, so that we have

$$
\partial \mathcal{G}_{u_{\epsilon}} \rightharpoonup \partial \mathcal{G}_{u} .
$$

u_{ϵ} is smooth in Ω_{ϵ} (Lemma 3) so we apply the Stokes theorem to compute the boundary of $\mathcal{G}_{u_{\epsilon}}$. For all 2-forms ω we have

$$
\partial \mathcal{G}_{u_{\epsilon}}(\omega)=\int_{\partial D_{\epsilon}}\left\langle\omega \circ \Phi, \frac{\partial \Phi}{\partial \tau} \wedge \frac{\partial \Phi}{\partial x_{3}}\right\rangle d x=\int_{\partial D_{\epsilon}} \sigma_{i j} \omega_{i j}(x, u(x)) M_{j}^{i}\left(D\left(\Phi_{\left\llcorner\partial D_{\epsilon}\right.}(x)\right)\right) d x
$$

where (τ, x_{3}) is an orthogonal coordinate system in the tangent space to $\partial D_{\epsilon}=\partial \Omega_{\epsilon}$. Explicitly

$$
\begin{align*}
& =\int_{\partial D_{\epsilon}} \omega_{23}(x, u(x)) d x+\sum_{k=1}^{3} \int_{0}^{2 \pi} \int_{0}^{l} \epsilon\left(\tilde{\omega}_{2 k}\left(\epsilon, \theta, x_{3}, u\left(\epsilon, \theta, x_{3}\right)\right) \frac{\partial u_{k}}{\partial x_{3}}\left(\epsilon, \theta, x_{3}\right) d x_{3} d \theta\right. \\
& \left.-\sum_{k=1}^{3} \int_{0}^{l} \int_{0}^{2 \pi} \epsilon \tilde{\omega}_{3 k}\left(\epsilon, \theta, x_{3}, u\left(\epsilon, \theta, x_{3}\right)\right) \frac{\partial u_{k}}{\partial \tau}\left(\epsilon, \theta, x_{3}\right)\right) d \theta d x_{3} . \tag{11}
\end{align*}
$$

Computation of the boundary

Integrations by parts and preceding lemmas provide

$$
\begin{aligned}
& \sum_{k=1}^{3} \int_{0}^{2 \pi} \epsilon \int_{0}^{l}\left(\frac{\partial \tilde{\omega}_{2 k}}{\partial x_{3}}\left(\epsilon, \theta, x_{3}, u\left(\epsilon, \theta, x_{3}\right)\right) u_{k}\left(\epsilon, \theta, x_{3}\right) d x_{3} d \theta=\right. \\
& \sum_{k=1}^{3} \int_{0}^{2 \pi} \epsilon \int_{0}^{l}\left(\frac{\partial \tilde{\omega}_{2 k}}{\partial x_{3}}\left(\epsilon, \theta, x_{3}, u\left(\epsilon, \theta, x_{3}\right)\right)(\theta+o(1)) d x_{3} d \theta\right.
\end{aligned}
$$

where $o(1) \rightarrow 0$ as $\epsilon \rightarrow 0$, so that its absolute value can be estimated by $\left\|\frac{\partial \tilde{\omega}_{2 k}}{\partial \times_{3}}\right\|_{\infty} O(\epsilon)$, and thus also this term vanishes.

Computation of the boundary

Integrations by parts and preceding lemmas provide

$$
\begin{aligned}
& \sum_{k=1}^{3} \int_{0}^{2 \pi} \epsilon \int_{0}^{l}\left(\frac{\partial \tilde{\omega}_{2 k}}{\partial x_{3}}\left(\epsilon, \theta, x_{3}, u\left(\epsilon, \theta, x_{3}\right)\right) u_{k}\left(\epsilon, \theta, x_{3}\right) d x_{3} d \theta=\right. \\
& \sum_{k=1}^{3} \int_{0}^{2 \pi} \epsilon \int_{0}^{l}\left(\frac{\partial \tilde{\omega}_{2 k}}{\partial x_{3}}\left(\epsilon, \theta, x_{3}, u\left(\epsilon, \theta, x_{3}\right)\right)(\theta+o(1)) d x_{3} d \theta,\right.
\end{aligned}
$$

where $o(1) \rightarrow 0$ as $\epsilon \rightarrow 0$, so that its absolute value can be estimated by $\left\|\frac{\partial \tilde{\omega}_{2 k}}{\partial x_{3}}\right\|_{\infty} O(\epsilon)$, and thus also this term vanishes.
As for the third term

$$
\begin{align*}
& =-\left.\sum_{k=1}^{3} \int_{0}^{l} \tilde{\omega}_{3 k}\left(0, \theta, x_{3}, b_{1} \theta, b_{2} \theta, b_{3} \theta\right) u_{k}\left(\epsilon, \theta, x_{3}\right)\right|_{0} ^{\theta=2 \pi} d x_{3} \\
& \left.+\sum_{k=1}^{3} \int_{0}^{l} \int_{0}^{2 \pi} \frac{d}{d \theta} \tilde{\omega}_{3 k}\left(0, \theta, x_{3}, b_{1} \theta, b_{2} \theta, b_{3} \theta\right) u_{k}\left(\epsilon, \theta, x_{3}\right)\right) d \theta d x_{3}+R(\epsilon) . \tag{12}
\end{align*}
$$

with $R(\epsilon)=o(1)$.

We then pass to the limit

$$
\begin{aligned}
& -\sum_{k=1}^{3}\left(2 \pi b_{k} \omega_{3 k}\left(0,0, x_{3}, 0,0,0\right)+\int_{0}^{l} \int_{0}^{2 \pi} \frac{d}{d \theta} \tilde{\omega}_{3 k}\left(0,0, x_{3}, b_{1} \theta, b_{2} \theta, b_{3} \theta\right) b_{k} \theta d \theta d x_{3}\right) \\
& =-4 \pi \sum_{k=1}^{3} b_{k} \int_{0}^{l} \omega_{3 k}\left(0,0, x_{3}, b_{1} \theta, b_{2} \theta, b_{3} \theta\right) d x_{3} \\
& =-4 \pi \int_{C}(\tau(x) \otimes b) \cdot \varphi^{\omega}(x, u(x)) d \mathcal{H}^{1}(x)=-4 \pi \mathcal{L} \otimes b\left(\varphi^{\omega} \circ \Phi\right)
\end{aligned}
$$

and the proof is completed.

We then pass to the limit

$$
\begin{aligned}
& -\sum_{k=1}^{3}\left(2 \pi b_{k} \omega_{3 k}\left(0,0, x_{3}, 0,0,0\right)+\int_{0}^{l} \int_{0}^{2 \pi} \frac{d}{d \theta} \tilde{\omega}_{3 k}\left(0,0, x_{3}, b_{1} \theta, b_{2} \theta, b_{3} \theta\right) b_{k} \theta d \theta d x_{3}\right) \\
& =-4 \pi \sum_{k=1}^{3} b_{k} \int_{0}^{l} \omega_{3 k}\left(0,0, x_{3}, b_{1} \theta, b_{2} \theta, b_{3} \theta\right) d x_{3} \\
& =-4 \pi \int_{C}(\tau(x) \otimes b) \cdot \varphi^{\omega}(x, u(x)) d \mathcal{H}^{1}(x)=-4 \pi \mathcal{L} \otimes b\left(\varphi^{\omega} \circ \Phi\right),
\end{aligned}
$$

and the proof is completed.
Moreover Theorem 5 can be generalized to an arbitrary closed integral 1-current \mathcal{L}, and it also holds

Lemma

Let S, C, b and u as in Theorem 5, and let $v \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{3}\right)$. Then \mathcal{G}_{u+v} is an integral current in $\mathcal{D}_{3}\left(\Omega \times \mathbb{T}^{3}\right)$ and it holds

$$
\begin{equation*}
M\left(\partial \mathcal{G}_{u+v}\right) \leq\left(1+24 \sqrt{3} \pi\|D v\|_{L \infty(\Omega)}\right)|\mathcal{L} \otimes b|(\Omega) \tag{13}
\end{equation*}
$$

The minimum problem

Let us go back to the minimum problem

$$
\begin{equation*}
\min _{(F, \mathcal{L}) \in \mathcal{A}} \mathcal{W}\left(F, \Lambda_{\mathcal{L}}\right), \tag{14}
\end{equation*}
$$

where the energy \mathcal{W} satisfies some appropriate convexity and coerciveness conditions (Van Goethem seminar), while \mathcal{A} is the space of admissible couples of deformations and dislocation currents.

The minimum problem

Let us go back to the minimum problem

$$
\begin{equation*}
\min _{(F, \mathcal{L}) \in \mathcal{A}} \mathcal{W}\left(F, \wedge_{\mathcal{L}}\right), \tag{14}
\end{equation*}
$$

where the energy \mathcal{W} satisfies some appropriate convexity and coerciveness conditions (Van Goethem seminar), while \mathcal{A} is the space of admissible couples of deformations and dislocation currents.
For the minimizer we want to be satisfied the equilibrium condition:

$$
\begin{equation*}
- \text { Div } \mathbb{C} \mathbb{E}=f \tag{15}
\end{equation*}
$$

where f is an external force acting on the elastic body, $\mathbb{E}:=\frac{1}{2}\left(F^{\top} F-I d\right)$ is the Green St. Venant strain, and $\mathbb{C}:=\frac{\partial^{2} W_{e}}{\partial F_{i j} \partial F_{k l}}$ its associate elasticity tensor. Note that
$f_{i}=-\frac{\partial^{2} W_{e}}{\partial F_{i j} \partial F_{k l}} \partial_{j} F_{k l}$ and hence $f \otimes \mathbb{I}=\mathbb{C} \operatorname{Div} F$.

The minimum problem

Let us go back to the minimum problem

$$
\begin{equation*}
\min _{(F, \mathcal{L}) \in \mathcal{A}} \mathcal{W}\left(F, \wedge_{\mathcal{L}}\right), \tag{14}
\end{equation*}
$$

where the energy \mathcal{W} satisfies some appropriate convexity and coerciveness conditions (Van Goethem seminar), while \mathcal{A} is the space of admissible couples of deformations and dislocation currents.
For the minimizer we want to be satisfied the equilibrium condition:

$$
\begin{equation*}
\text { - Div } \mathbb{C E}=f \tag{15}
\end{equation*}
$$

where f is an external force acting on the elastic body, $\mathbb{E}:=\frac{1}{2}\left(F^{\top} F-I d\right)$ is the Green St. Venant strain, and $\mathbb{C}:=\frac{\partial^{2} W_{e}}{\partial F_{i j} \partial F_{k l}}$ its associate elasticity tensor. Note that
$f_{i}=-\frac{\partial^{2} W_{e}}{\partial F_{i j} \partial F_{k l}} \partial_{j} F_{k l}$ and hence $f \otimes \mathbb{I}=\mathbb{C} \operatorname{Div} F$.
We assume that W_{e} is smooth enough and that the material has finite compliance, that is, \mathbb{C}^{-1} is finite. Moreover, for simplicity of discussion (but not of the model) we will assume $\mathbb{C}_{i j k l}=\delta_{i j} \delta_{k l}$. Hence it holds $f_{i} \delta_{j l}=\delta_{i j}(\operatorname{Div} F)_{k}$, that is,

$$
f_{i}=(\operatorname{Div} F)_{i}
$$

Existence result

So the class of admissible deformations is defined as follows. Let $f \in L^{q}\left(\Omega, \mathbb{R}^{3}\right)$ and let $b \in \mathbb{Z}^{3}$ a fixed Burgers vector, then

$$
\begin{align*}
\mathcal{F}^{b}(f):= & \left\{F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right):-\operatorname{Div} F=f \text { and }-\operatorname{Curl} F=b \otimes \mathcal{L}\right. \\
& \text { for some closed integral 1-current } \mathcal{L}\} . \tag{16}
\end{align*}
$$

Existence result

So the class of admissible deformations is defined as follows. Let $f \in L^{q}\left(\Omega, \mathbb{R}^{3}\right)$ and let $b \in \mathbb{Z}^{3}$ a fixed Burgers vector, then

$$
\begin{align*}
\mathcal{F}^{b}(f):= & \left\{F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right):-\operatorname{Div} F=f \text { and }-\operatorname{Curl} F=b \otimes \mathcal{L}\right. \\
& \text { for some closed integral 1-current } \mathcal{L}\} . \tag{16}
\end{align*}
$$

The existence of a minimizer of \mathcal{W} in $\mathcal{F}^{b}(f)$ is provided by the following:

Theorem

Let $p>1$ and $f \in L^{q}\left(\Omega, \mathbb{R}^{3}\right)$ with $q>3$. If \mathcal{W} satisfies (\ldots), then there exists a minimizer $F \in \mathcal{F}^{b}(f)$ of \mathcal{W}.

Existence result

So the class of admissible deformations is defined as follows. Let $f \in L^{q}\left(\Omega, \mathbb{R}^{3}\right)$ and let $b \in \mathbb{Z}^{3}$ a fixed Burgers vector, then

$$
\begin{align*}
\mathcal{F}^{b}(f):= & \left\{F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right):-\operatorname{Div} F=f \text { and }- \text { Curl } F=b \otimes \mathcal{L}\right. \\
& \text { for some closed integral 1-current } \mathcal{L}\} . \tag{16}
\end{align*}
$$

The existence of a minimizer of \mathcal{W} in $\mathcal{F}^{b}(f)$ is provided by the following:

Theorem

Let $p>1$ and $f \in L^{q}\left(\Omega, \mathbb{R}^{3}\right)$ with $q>3$. If \mathcal{W} satisfies (\ldots), then there exists a minimizer $F \in \mathcal{F}^{b}(f)$ of \mathcal{W}.

A consequence of Helmoltz decomposition implies that, if $F \in \mathcal{F}^{b}(f)$, then F can be written as

$$
F=D v+D u+D h,
$$

where $v \in W_{0}^{2, q}\left(\Omega, \mathbb{R}^{3}\right)$ with $\Delta v=f, u \in W^{1, p}\left(\Omega, \mathbb{T}^{3}\right)$ is the function in Theorem 5 , and $h \in C^{\infty}\left(\Omega, \mathbb{R}^{3}\right)$ is an harmonic map on Ω with some boundary conditions. The Sobolev embeddings Theorem provides $v \in C^{1}\left(\Omega, \mathbb{R}^{3}\right)$.

Sketch of the proof

To prove the existence result, we can use such decomposition for all the terms of a minimizing sequence $F_{n}=D v_{n}+D u_{n}+D h_{n}$. The coerciveness of the energy \mathcal{W}_{e} gives a-priori bounds on the L^{p} norms of all the minors of $D v_{n}, D u_{n}$, and $D h_{n}$, while the coerciveness of $\mathcal{W}_{\text {defect }}$ gives an a-priori bound on the mass of the densities $\Lambda_{\mathcal{L}_{n}}$. In particular there exist $F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right), A \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$, and $D \in L^{p}(\Omega)$ such that

$$
\begin{align*}
& F_{k} \rightharpoonup F \quad \text { weakly in } L^{P}\left(\Omega, \mathbb{R}^{3 \times 3}\right) \tag{17a}\\
& \operatorname{adj} F_{k} \rightharpoonup A \quad \text { weakly in } L^{P}\left(\Omega, \mathbb{R}^{3 \times 3}\right), \tag{17b}\\
& \operatorname{det} F_{k} \rightharpoonup D \quad \text { weakly in } L^{P}(\Omega) \tag{17c}
\end{align*}
$$

and a measure $\Lambda \in \mathcal{M}_{b}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ with

$$
\begin{equation*}
\Lambda_{k} \rightharpoonup \Lambda \quad \text { weakly }^{*} \text { in } \mathcal{M}_{b}\left(\Omega, \mathbb{R}^{3 \times 3}\right) \tag{18}
\end{equation*}
$$

where we have set $\Lambda_{k}=\Lambda_{\mathcal{L}_{k}}=-\operatorname{Curl} F_{k}$

Sketch of the proof

To prove the existence result, we can use such decomposition for all the terms of a minimizing sequence $F_{n}=D v_{n}+D u_{n}+D h_{n}$. The coerciveness of the energy \mathcal{W}_{e} gives a-priori bounds on the L^{p} norms of all the minors of $D v_{n}, D u_{n}$, and $D h_{n}$, while the coerciveness of $\mathcal{W}_{\text {defect }}$ gives an a-priori bound on the mass of the densities $\Lambda_{\mathcal{L}_{n}}$. In particular there exist $F \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right), A \in L^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$, and $D \in L^{p}(\Omega)$ such that

$$
\begin{align*}
& F_{k} \rightharpoonup F \quad \text { weakly in } L^{P}\left(\Omega, \mathbb{R}^{3 \times 3}\right) \tag{17a}\\
& \operatorname{adj} F_{k} \rightharpoonup A \quad \text { weakly in } L^{P}\left(\Omega, \mathbb{R}^{3 \times 3}\right), \tag{17b}\\
& \operatorname{det} F_{k} \rightharpoonup D \quad \text { weakly in } L^{P}(\Omega) \tag{17c}
\end{align*}
$$

and a measure $\Lambda \in \mathcal{M}_{b}\left(\Omega, \mathbb{R}^{3 \times 3}\right)$ with

$$
\begin{equation*}
\Lambda_{k} \rightharpoonup \Lambda \quad \text { weakly* in } \mathcal{M}_{b}\left(\Omega, \mathbb{R}^{3 \times 3}\right) \tag{18}
\end{equation*}
$$

where we have set $\Lambda_{k}=\Lambda_{\mathcal{L}_{k}}=-\operatorname{Curl} F_{k}$
Theorem 5 and Lemma 6 provide

$$
M\left(\partial \mathcal{G}_{v_{n}+u_{n}+h_{n}}\right)<C,
$$

thanks to the regularity of v_{n} and h_{n}.

Sketch of the proof

Then we can employ

Theorem

Let u_{k} be a sequence in $\mathcal{A}_{p}\left(\Omega, \mathbb{T}^{3}\right)$ such that $u_{k} \rightarrow u$ strongly in $L^{p}\left(\Omega, \mathbb{T}^{3}\right)$ and suppose that there exist functions $v_{\beta}^{\alpha} \in L^{p}(\Omega)$ such that $M_{\bar{\alpha}}^{\beta}\left(D u_{k}\right) \rightharpoonup v_{\alpha}^{\beta}$ for all multi-indices α and β with $|\alpha|+|\beta|=3$. If

$$
\begin{equation*}
M\left(\partial \mathcal{G}_{u_{k}}\right)<C<+\infty \tag{19}
\end{equation*}
$$

for all $k>0$, then $u \in \mathcal{A}_{p}\left(\Omega, \mathbb{T}^{3}\right)$ and $v_{\alpha}^{\beta}=M_{\bar{\alpha}}^{\beta}(D u)$.
to prove that $A=\operatorname{adj} F, D=\operatorname{det} F$.

Sketch of the proof

Then we can employ

Theorem

Let u_{k} be a sequence in $\mathcal{A}_{p}\left(\Omega, \mathbb{T}^{3}\right)$ such that $u_{k} \rightarrow u$ strongly in $L^{p}\left(\Omega, \mathbb{T}^{3}\right)$ and suppose that there exist functions $v_{\beta}^{\alpha} \in L^{p}(\Omega)$ such that $M_{\bar{\alpha}}^{\beta}\left(D u_{k}\right) \rightharpoonup v_{\alpha}^{\beta}$ for all multi-indices α and β with $|\alpha|+|\beta|=3$. If

$$
\begin{equation*}
M\left(\partial \mathcal{G}_{u_{k}}\right)<C<+\infty \tag{19}
\end{equation*}
$$

for all $k>0$, then $u \in \mathcal{A}_{p}\left(\Omega, \mathbb{T}^{3}\right)$ and $v_{\alpha}^{\beta}=M_{\bar{\alpha}}^{\beta}(D u)$.
to prove that $A=\operatorname{adj} F, D=\operatorname{det} F$.
The fact that there exists a closed integral 1-current \mathcal{L} such that $\Lambda=\Lambda_{\mathcal{L}}=-$ Curl F is an easy consequence of the compactness theorem for integral currents and of convergence (18). The conclusion then follows by lower semicontinuity.

Remarks and open questions

- We need the regularity condition of f. In general if u is as in Theorem 5 and v is another function, it is difficult to obtain estimates for the boundary of \mathcal{G}_{u+v} better than (13).

Remarks and open questions

- We need the regularity condition of f. In general if u is as in Theorem 5 and v is another function, it is difficult to obtain estimates for the boundary of \mathcal{G}_{u+v} better than (13).
- We have proved the result for a density Λ of the form $\mathcal{L} \otimes b$. In particular all the Burgers vector of the cluster are integer multiple of b. What happens to a cluster with linearly independent Burgers vectors?

Remarks and open questions

- We need the regularity condition of f. In general if u is as in Theorem 5 and v is another function, it is difficult to obtain estimates for the boundary of \mathcal{G}_{u+v} better than (13).
- We have proved the result for a density Λ of the form $\mathcal{L} \otimes b$. In particular all the Burgers vector of the cluster are integer multiple of b. What happens to a cluster with linearly independent Burgers vectors?

Thank you for attention!

