Dislocations: geometric and analytic properties (a joint work with N. Van Goethem)

Riccardo Scala

Lisboa July 31, 2014 We want to solve the minimum problem

$$\min_{(F,\mathcal{L})\in\mathcal{A}}\mathcal{W}(F,\Lambda_{\mathcal{L}}) = \mathcal{W}_{e}(F) + \mathcal{W}_{defect}(\Lambda_{\mathcal{L}}),$$
(1)

where ${\cal A}$ is the space of admissible couples of deformations and dislocation currents.

We want to solve the minimum problem

$$\min_{(F,\mathcal{L})\in\mathcal{A}}\mathcal{W}(F,\Lambda_{\mathcal{L}})=\mathcal{W}_{e}(F)+\mathcal{W}_{defect}(\Lambda_{\mathcal{L}}),\tag{1}$$

where \mathcal{A} is the space of admissible couples of deformations and dislocation currents. If $F_n \in L^p(\Omega, \mathbb{R}^{3 \times 3})$ is a minimizing sequence, the policonvexity of \mathcal{W}_e requires

$$M^{\beta}_{\bar{\alpha}}(F_n) \rightharpoonup M^{\beta}_{\bar{\alpha}}(F)$$
 weakly in $L^{p}(\Omega)$, (2)

for all multiindeces α , β such that $|\alpha| + |\beta| = 3$.

We want to solve the minimum problem

$$\min_{(F,\mathcal{L})\in\mathcal{A}}\mathcal{W}(F,\Lambda_{\mathcal{L}}) = \mathcal{W}_{e}(F) + \mathcal{W}_{defect}(\Lambda_{\mathcal{L}}),$$
(1)

where \mathcal{A} is the space of admissible couples of deformations and dislocation currents. If $F_n \in L^p(\Omega, \mathbb{R}^{3 \times 3})$ is a minimizing sequence, the policonvexity of \mathcal{W}_e requires

$$M^{\beta}_{\bar{\alpha}}(F_n) \rightharpoonup M^{\beta}_{\bar{\alpha}}(F)$$
 weakly in $L^{p}(\Omega)$, (2)

for all multiindeces α , β such that $|\alpha| + |\beta| = 3$.

To prove this we have to focus on the finer properties of the functions F_{n} , using the fact that

$$-\operatorname{Curl} F_n = \Lambda_{\mathcal{L}_n}^T$$

for a bounded sequence of densities $\Lambda_{\mathcal{L}_n}$.

Consider a function $F \in L^p(\Omega, \mathbb{R}^{3 \times 3})$ satisfying

$$-\operatorname{Curl} F = b \otimes \mathcal{L},$$

for some dislocation (closed integral 1-current) \mathcal{L} . Since the Burgers vector *b* belongs to the lattice \mathbb{Z}^3 and \mathcal{L} has integer multiplicity, whenever γ is a lipschitz closed curve, the path integral of *F* along γ turns out to be an element of \mathbb{Z}^3 . We can then define GLOBALLY a deformation *u* whose gradient is *F* and whose value is univocally given up to an element of \mathbb{Z}^3 .

Consider a function $F \in L^p(\Omega, \mathbb{R}^{3 \times 3})$ satisfying

$$-\operatorname{Curl} F = b \otimes \mathcal{L},$$

for some dislocation (closed integral 1-current) \mathcal{L} . Since the Burgers vector *b* belongs to the lattice \mathbb{Z}^3 and \mathcal{L} has integer multiplicity, whenever γ is a lipschitz closed curve, the path integral of *F* along γ turns out to be an element of \mathbb{Z}^3 . We can then define GLOBALLY a deformation *u* whose gradient is *F* and whose value is univocally given up to an element of \mathbb{Z}^3 .

In other words it is well-defined

 $u \in W^{1,p}(\Omega, \mathbb{T}^3),$

 \mathbb{T}^3 being the 3-dimensional torus $\mathbb{R}^3/\mathbb{Z}^3$.

Consider a function $F \in L^p(\Omega, \mathbb{R}^{3 \times 3})$ satisfying

$$-\operatorname{Curl} F = b \otimes \mathcal{L},$$

for some dislocation (closed integral 1-current) \mathcal{L} . Since the Burgers vector *b* belongs to the lattice \mathbb{Z}^3 and \mathcal{L} has integer multiplicity, whenever γ is a lipschitz closed curve, the path integral of *F* along γ turns out to be an element of \mathbb{Z}^3 . We can then define GLOBALLY a deformation *u* whose gradient is *F* and whose value is univocally given up to an element of \mathbb{Z}^3 .

In other words it is well-defined

$$u \in W^{1,p}(\Omega, \mathbb{T}^3),$$

 \mathbb{T}^3 being the 3-dimensional torus $\mathbb{R}^3/\mathbb{Z}^3$.

To prove convergence (2) we will use the fact that if $u_n \in W^{1,p}(\Omega, \mathbb{T}^3)$ are such that their graphs \mathcal{G}_{u_n} satisfies $M(\partial \mathcal{G}_{u_n}) < C$ then there exists $u \in W^{1,p}(\Omega, \mathbb{T}^3)$ with (up to a subsequence)

$$M^{\beta}_{\bar{\alpha}}(Du_n) \rightharpoonup M^{\beta}_{\bar{\alpha}}(Du)$$
 weakly in $L^{p}(\Omega)$,

for all α , β , $|\alpha| + |\beta| = 3$.

Preliminaries

We introduce the torus $\mathbb{T} \cong \mathbb{R}/\sim$, where $a \sim b$ iff $a - b \in \mathbb{Z}$, and the standard projection $\pi_T : \mathbb{R} \to \mathbb{T}$. Now we will consider graphs of maps $u : \Omega \to \mathbb{T}^n$. These turn out to be *n*-rectifiable currents in $\Omega \times \mathbb{T}^n$.

Preliminaries

We introduce the torus $\mathbb{T} \cong \mathbb{R}/\sim$, where $a \sim b$ iff $a - b \in \mathbb{Z}$, and the standard projection $\pi_T : \mathbb{R} \to \mathbb{T}$. Now we will consider graphs of maps $u : \Omega \to \mathbb{T}^n$. These turn out to be *n*-rectifiable currents in $\Omega \times \mathbb{T}^n$. We set

 $\mathcal{D}^n(\Omega \times \mathbb{T}^n) := \{ \omega \in \mathcal{D}^n(\Omega \times \mathbb{R}^n) : 1 - \text{periodic in the 2nd variable} \}.$

If \mathcal{T} is a *n*-current in $\mathcal{D}_n(\Omega \times \mathbb{R}^n)$ that has compact support in $\overline{\Omega} \times \mathbb{R}^n$, then it is well-defined the current $\mathcal{T}(\mathcal{T}) \in \mathcal{D}_n(\Omega \times \mathbb{T}^n)$ defined as

$$T(\mathcal{T}) := \mathcal{T}_{\llcorner \mathcal{D}^n(\Omega \times \mathbb{T}^n)}.$$
(3)

Moreover $M(T(\mathcal{T})) \leq M(\mathcal{T})$.

Let $u \in \mathcal{A}_{p}(\Omega, \mathbb{R}^{n})$, then we define $\mathcal{T}(u) : \Omega \to \mathbb{R}^{n}$ by $\mathcal{T}(u) := \pi_{\mathcal{T}}(u)$. It is easily seen that $\mathcal{T}(\mathcal{G}_{u})$ is a *n*-rectifiable current in $\Omega \times \mathbb{T}^{n}$.

Preliminaries

We introduce the torus $\mathbb{T} \cong \mathbb{R}/\sim$, where $a \sim b$ iff $a - b \in \mathbb{Z}$, and the standard projection $\pi_T : \mathbb{R} \to \mathbb{T}$. Now we will consider graphs of maps $u : \Omega \to \mathbb{T}^n$. These turn out to be *n*-rectifiable currents in $\Omega \times \mathbb{T}^n$. We set

 $\mathcal{D}^n(\Omega \times \mathbb{T}^n) := \{ \omega \in \mathcal{D}^n(\Omega \times \mathbb{R}^n) : 1 - \text{periodic in the 2nd variable} \}.$

If \mathcal{T} is a *n*-current in $\mathcal{D}_n(\Omega \times \mathbb{R}^n)$ that has compact support in $\overline{\Omega} \times \mathbb{R}^n$, then it is well-defined the current $\mathcal{T}(\mathcal{T}) \in \mathcal{D}_n(\Omega \times \mathbb{T}^n)$ defined as

$$T(\mathcal{T}) := T_{\sqcup \mathcal{D}^n(\Omega \times \mathbb{T}^n)}.$$
(3)

Moreover $M(\mathcal{T}(\mathcal{T})) \leq M(\mathcal{T})$. Let $u \in \mathcal{A}_p(\Omega, \mathbb{R}^n)$, then we define $\mathcal{T}(u) : \Omega \to \mathbb{R}^n$ by $\mathcal{T}(u) := \pi_{\mathcal{T}}(u)$. It is easily seen that $\mathcal{T}(\mathcal{G}_u)$ is a *n*-rectifiable current in $\Omega \times \mathbb{T}^n$.

Definition

$$\mathcal{A}_{\rho}(\Omega, \mathbb{T}^{n}) := \{ u \in L^{p}(\Omega, \mathbb{T}^{n}) : u \text{ is approx. diff. a.e. on } \Omega, \text{ and} \\ M_{\bar{\alpha}}^{\beta}(Du) \in L^{p}(\Omega) \text{ for all } |\alpha| + |\beta| = n \}$$
(4)

 $u \in \mathcal{A}_p(\Omega, \mathbb{T}^n) \Rightarrow \mathcal{G}_u$ is a *n*-rectifiable current in $\Omega \times \mathbb{T}^n$.

Lemma

Let C be a smooth closed and simple curve in Ω and let S be a smooth surface in Ω bounded by C with unit normal N. The solution (up to a harmonic map on \mathbb{R}^3) of

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^3 \setminus S \\ [u] := u^+ - u^- = b & \text{on } S \\ [\partial_N u] := \partial_N u^+ - \partial_N u^- = 0 & \text{on } S \end{cases}$$
(5)

is given by

$$u(x) = -b \int_{S} \partial_{N} \Gamma(x' - x) dS(x'), \qquad (6)$$

for $x \in \mathbb{R}^3 \setminus S$, where Γ is the solution in \mathbb{R}^3 of $\Delta \Gamma = \delta_0$.

Lemma

Let C be a smooth closed and simple curve in Ω and let S be a smooth surface in Ω bounded by C with unit normal N. The solution (up to a harmonic map on \mathbb{R}^3) of

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^3 \setminus S \\ [u] := u^+ - u^- = b & \text{on } S \\ [\partial_N u] := \partial_N u^+ - \partial_N u^- = 0 & \text{on } S \end{cases}$$
(5)

is given by

$$u(x) = -b \int_{S} \partial_{N} \Gamma(x' - x) dS(x'), \qquad (6)$$

for $x \in \mathbb{R}^3 \setminus S$, where Γ is the solution in \mathbb{R}^3 of $\Delta \Gamma = \delta_0$.

Moreover we can prove that there exists a constant $\gamma > 0$ independent of C and Ω , such that the solution u of (5) satisfies

$$|\partial_i u(x)| \le \gamma \frac{b}{d(x,C)}.$$
(7)

As a consequence of Lemma 5:

Lemma

Let $b \in \mathbb{Z}$. Then the solution u of (5) belongs to $C^{\infty}(\Omega \setminus C, \mathbb{T})$ and it is harmonic in $\Omega \setminus C$.

As a consequence of Lemma 5:

Lemma

Let $b \in \mathbb{Z}$. Then the solution u of (5) belongs to $C^{\infty}(\Omega \setminus C, \mathbb{T})$ and it is harmonic in $\Omega \setminus C$.

We consider a tubular neighborhood U of the curve C where we can use cylindrical coordinates and S coinciding with $\theta = 0$. We need this result of approximation:

Lemma

Let C and S as above and let u be the solution of the elliptic problem

$$\begin{cases} \Delta u = 0 & \text{on } \mathbb{R}^3 \setminus S \\ u^+ - u^- = 1 & \text{on } S \\ \partial_N^+ u - \partial_N^- u = 0 & \text{on } S. \end{cases}$$
(8)

Then for all $(\rho, \theta, z) \in U$ with $\theta \neq 0$ there exists the limit $\lim_{\epsilon \to 0^+} u(\epsilon \rho, \theta, z) = \theta + c$, where c is a fixed arbitrary constant.

We denote by $\{e_1, e_2, e_3, \varepsilon_1, \varepsilon_2, \varepsilon_3\}$ the basis of $\Omega \times \mathbb{R}^3$.

Theorem

Let $b = (b_1, b_2, b_3) \in \mathbb{Z}^3$ and let $u = (u_1, u_2, u_3) : \Omega \to \mathbb{R}^3$ with u_i satisfying the equation (5) with $b = b_i$. Then \mathcal{G}_u is the integral current in $\mathcal{D}_3(\Omega \times \mathbb{T}^3)$ and its boundary is given by

$$\partial \mathcal{G}_u(\omega) = -4\pi \mathcal{L} \otimes b(\varphi^\omega \circ \Phi),$$
 (9)

for all $\omega \in D^2(\Omega \times \mathbb{T}^3)$, where $\Phi := Id \times u$ and φ^{ω} is defined componentwise as

$$\varphi^{\omega}_{\alpha\beta} := \langle \omega, \mathbf{e}_{\alpha} \wedge \varepsilon_{\beta} \rangle. \tag{10}$$

with $\alpha, \beta \in \{1, 2, 3\}.$

In words, φ^{ω} represents the tensor of the coefficients of the mixed components of ω .

Computation of the boundary

We procede by approximation. We set $\Omega_{\epsilon} := \Omega \setminus \overline{D}_{\epsilon}$, $u_{\epsilon} := u_{\Box \Omega_{\epsilon}}$, where $D_{\epsilon} := \{(\rho, \theta, z) \in U : \rho < \epsilon\}$. It is easy to see that $\mathcal{G}_{u_{\epsilon}} \rightharpoonup \mathcal{G}_{u}$ as current, so that we have

$$\partial \mathcal{G}_{u_{\epsilon}} \rightharpoonup \partial \mathcal{G}_{u}.$$

Computation of the boundary

We procede by approximation. We set $\Omega_{\epsilon} := \Omega \setminus \overline{D}_{\epsilon}$, $u_{\epsilon} := u_{\Box}\Omega_{\epsilon}$, where $D_{\epsilon} := \{(\rho, \theta, z) \in U : \rho < \epsilon\}$. It is easy to see that $\mathcal{G}_{u_{\epsilon}} \rightharpoonup \mathcal{G}_{u}$ as current, so that we have

$$\partial \mathcal{G}_{u_{\epsilon}} \rightharpoonup \partial \mathcal{G}_{u}.$$

 u_{ϵ} is smooth in Ω_{ϵ} (Lemma 3) so we apply the Stokes theorem to compute the boundary of $\mathcal{G}_{u_{\epsilon}}$. For all 2-forms ω we have

$$\partial \mathcal{G}_{u_{\epsilon}}(\omega) = \int_{\partial D_{\epsilon}} \langle \omega \circ \Phi, \frac{\partial \Phi}{\partial \tau} \wedge \frac{\partial \Phi}{\partial x_{3}} \rangle dx = \int_{\partial D_{\epsilon}} \sigma_{ij} \omega_{ij}(x, u(x)) M_{j}^{i}(D(\Phi_{\vdash \partial D_{\epsilon}}(x))) dx,$$

where (τ, x_3) is an orthogonal coordinate system in the tangent space to $\partial D_{\epsilon} = \partial \Omega_{\epsilon}$.

Computation of the boundary

We procede by approximation. We set $\Omega_{\epsilon} := \Omega \setminus \overline{D}_{\epsilon}$, $u_{\epsilon} := u_{\Box \Omega_{\epsilon}}$, where $D_{\epsilon} := \{(\rho, \theta, z) \in U : \rho < \epsilon\}$. It is easy to see that $\mathcal{G}_{u_{\epsilon}} \rightharpoonup \mathcal{G}_{u}$ as current, so that we have

$$\partial \mathcal{G}_{u_{\epsilon}} \rightharpoonup \partial \mathcal{G}_{u}.$$

 u_{ϵ} is smooth in Ω_{ϵ} (Lemma 3) so we apply the Stokes theorem to compute the boundary of $\mathcal{G}_{u_{\epsilon}}$. For all 2-forms ω we have

$$\partial \mathcal{G}_{u_{\epsilon}}(\omega) = \int_{\partial D_{\epsilon}} \langle \omega \circ \Phi, \frac{\partial \Phi}{\partial \tau} \wedge \frac{\partial \Phi}{\partial x_{3}} \rangle dx = \int_{\partial D_{\epsilon}} \sigma_{ij} \omega_{ij}(x, u(x)) M_{j}^{i}(D(\Phi_{\vdash \partial D_{\epsilon}}(x))) dx,$$

where (τ, x_3) is an orthogonal coordinate system in the tangent space to $\partial D_{\epsilon} = \partial \Omega_{\epsilon}$. Explicitly

$$= \int_{\partial D_{\epsilon}} \omega_{23}(x, u(x)) dx + \sum_{k=1}^{3} \int_{0}^{2\pi} \int_{0}^{l} \epsilon(\tilde{\omega}_{2k}(\epsilon, \theta, x_{3}, u(\epsilon, \theta, x_{3}))) \frac{\partial u_{k}}{\partial x_{3}}(\epsilon, \theta, x_{3}) dx_{3} d\theta$$
$$- \sum_{k=1}^{3} \int_{0}^{l} \int_{0}^{2\pi} \epsilon \tilde{\omega}_{3k}(\epsilon, \theta, x_{3}, u(\epsilon, \theta, x_{3})) \frac{\partial u_{k}}{\partial \tau}(\epsilon, \theta, x_{3}) d\theta dx_{3}.$$
(11)

Integrations by parts and preceding lemmas provide

$$\sum_{k=1}^{3} \int_{0}^{2\pi} \epsilon \int_{0}^{l} \left(\frac{\partial \tilde{\omega}_{2k}}{\partial x_3}(\epsilon, \theta, x_3, u(\epsilon, \theta, x_3)) u_k(\epsilon, \theta, x_3) dx_3 d\theta \right)$$
$$= \sum_{k=1}^{3} \int_{0}^{2\pi} \epsilon \int_{0}^{l} \left(\frac{\partial \tilde{\omega}_{2k}}{\partial x_3}(\epsilon, \theta, x_3, u(\epsilon, \theta, x_3)) (\theta + o(1)) dx_3 d\theta \right)$$

where $o(1) \to 0$ as $\epsilon \to 0$, so that its absolute value can be estimated by $\|\frac{\partial \omega_{2k}}{\partial v_{2k}}\|_{\infty} o(\epsilon)$, and thus also this term vanishes.

Integrations by parts and preceding lemmas provide

$$\sum_{k=1}^{3} \int_{0}^{2\pi} \epsilon \int_{0}^{l} \left(\frac{\partial \tilde{\omega}_{2k}}{\partial x_{3}}(\epsilon, \theta, x_{3}, u(\epsilon, \theta, x_{3}))u_{k}(\epsilon, \theta, x_{3})dx_{3}d\theta \right) = \\ \sum_{k=1}^{3} \int_{0}^{2\pi} \epsilon \int_{0}^{l} \left(\frac{\partial \tilde{\omega}_{2k}}{\partial x_{3}}(\epsilon, \theta, x_{3}, u(\epsilon, \theta, x_{3}))(\theta + o(1))dx_{3}d\theta \right) dx_{3}d\theta$$

where $o(1) \rightarrow 0$ as $\epsilon \rightarrow 0$, so that its absolute value can be estimated by $\|\frac{\partial \tilde{\omega}_{2k}}{\partial x_3}\|_{\infty} o(\epsilon)$, and thus also this term vanishes. As for the third term

$$= -\sum_{k=1}^{3} \int_{0}^{l} \tilde{\omega}_{3k}(0,\theta,x_{3},b_{1}\theta,b_{2}\theta,b_{3}\theta)u_{k}(\epsilon,\theta,x_{3})\Big|_{0}^{\theta=2\pi} dx_{3}$$
$$+\sum_{k=1}^{3} \int_{0}^{l} \int_{0}^{2\pi} \frac{d}{d\theta} \tilde{\omega}_{3k}(0,\theta,x_{3},b_{1}\theta,b_{2}\theta,b_{3}\theta)u_{k}(\epsilon,\theta,x_{3}))d\theta dx_{3} + R(\epsilon).$$
(12)

with $R(\epsilon) = o(1)$.

We then pass to the limit

$$\begin{split} &-\sum_{k=1}^{3}\left(2\pi b_{k}\omega_{3k}(0,0,x_{3},0,0,0)+\int_{0}^{t}\int_{0}^{2\pi}\frac{d}{d\theta}\tilde{\omega}_{3k}(0,0,x_{3},b_{1}\theta,b_{2}\theta,b_{3}\theta)b_{k}\theta d\theta dx_{3}\right)\\ &=-4\pi\sum_{k=1}^{3}b_{k}\int_{0}^{t}\omega_{3k}(0,0,x_{3},b_{1}\theta,b_{2}\theta,b_{3}\theta)dx_{3}\\ &=-4\pi\int_{C}(\tau(x)\otimes b)\cdot\varphi^{\omega}(x,u(x))d\mathcal{H}^{1}(x)=-4\pi\mathcal{L}\otimes b(\varphi^{\omega}\circ\Phi), \end{split}$$

and the proof is completed.

We then pass to the limit

$$\begin{split} &-\sum_{k=1}^{3}\left(2\pi b_{k}\omega_{3k}(0,0,x_{3},0,0,0)+\int_{0}^{t}\int_{0}^{2\pi}\frac{d}{d\theta}\tilde{\omega}_{3k}(0,0,x_{3},b_{1}\theta,b_{2}\theta,b_{3}\theta)b_{k}\theta d\theta dx_{3}\right)\\ &=-4\pi\sum_{k=1}^{3}b_{k}\int_{0}^{t}\omega_{3k}(0,0,x_{3},b_{1}\theta,b_{2}\theta,b_{3}\theta)dx_{3}\\ &=-4\pi\int_{C}(\tau(x)\otimes b)\cdot\varphi^{\omega}(x,u(x))d\mathcal{H}^{1}(x)=-4\pi\mathcal{L}\otimes b(\varphi^{\omega}\circ\Phi), \end{split}$$

and the proof is completed.

Moreover Theorem 5 can be generalized to an arbitrary closed integral 1-current $\mathcal{L},$ and it also holds

Lemma

Let S, C, b and u as in Theorem 5, and let $v \in C^1(\overline{\Omega}, \mathbb{R}^3)$. Then \mathcal{G}_{u+v} is an integral current in $\mathcal{D}_3(\Omega \times \mathbb{T}^3)$ and it holds

$$M(\partial \mathcal{G}_{u+v}) \leq (1 + 24\sqrt{3}\pi \|Dv\|_{L^{\infty}(\Omega)}) |\mathcal{L} \otimes b|(\Omega).$$
(13)

Let us go back to the minimum problem

$$\min_{F,\mathcal{L})\in\mathcal{A}}\mathcal{W}(F,\Lambda_{\mathcal{L}}),\tag{14}$$

where the energy ${\cal W}$ satisfies some appropriate convexity and coerciveness conditions (Van Goethem seminar), while ${\cal A}$ is the space of admissible couples of deformations and dislocation currents.

Let us go back to the minimum problem

$$\min_{F,\mathcal{L})\in\mathcal{A}}\mathcal{W}(F,\Lambda_{\mathcal{L}}),\tag{14}$$

where the energy ${\cal W}$ satisfies some appropriate convexity and coerciveness conditions (Van Goethem seminar), while ${\cal A}$ is the space of admissible couples of deformations and dislocation currents.

For the minimizer we want to be satisfied the equilibrium condition:

$$-\operatorname{Div} \mathbb{CE} = f \tag{15}$$

where *f* is an external force acting on the elastic body, $\mathbb{E} := \frac{1}{2}(F^T F - Id)$ is the Green St. Venant strain, and $\mathbb{C} := \frac{\partial^2 W_e}{\partial F_{ij}\partial F_{kl}}$ its associate elasticity tensor. Note that $f_i = -\frac{\partial^2 W_e}{\partial F_{ij}\partial F_{kl}}\partial_j F_{kl}$ and hence $f \otimes \mathbb{I} = \mathbb{C} \operatorname{Div} F$. Let us go back to the minimum problem

$$\min_{F,\mathcal{L})\in\mathcal{A}}\mathcal{W}(F,\Lambda_{\mathcal{L}}),\tag{14}$$

where the energy ${\cal W}$ satisfies some appropriate convexity and coerciveness conditions (Van Goethem seminar), while ${\cal A}$ is the space of admissible couples of deformations and dislocation currents.

For the minimizer we want to be satisfied the equilibrium condition:

$$-\operatorname{Div} \mathbb{CE} = f \tag{15}$$

where *f* is an external force acting on the elastic body, $\mathbb{E} := \frac{1}{2}(F^T F - Id)$ is the Green St. Venant strain, and $\mathbb{C} := \frac{\partial^2 W_e}{\partial F_{ij} \partial F_{kl}}$ its associate elasticity tensor. Note that $f_i = -\frac{\partial^2 W_e}{\partial F_{ij} \partial F_{kl}} \partial_j F_{kl}$ and hence $f \otimes \mathbb{I} = \mathbb{C} \operatorname{Div} F$. We assume that W_e is smooth enough and that the material has finite compliance, that is, \mathbb{C}^{-1} is finite. Moreover, for simplicity of discussion (but not of the model) we will assume $\mathbb{C}_{ijkl} = \delta_{ij} \delta_{kl}$. Hence it holds $f_i \delta_{ij} = \delta_{ij} (\operatorname{Div} F)_{k}$, that is ,

$$f_i = (\operatorname{Div} F)_i.$$

So the class of admissible deformations is defined as follows. Let $f \in L^q(\Omega, \mathbb{R}^3)$ and let $b \in \mathbb{Z}^3$ a fixed Burgers vector, then

$$\mathcal{F}^{b}(f) := \{ F \in L^{p}(\Omega, \mathbb{R}^{3 \times 3}) : -\operatorname{Div} F = f \text{ and } -\operatorname{Curl} F = b \otimes \mathcal{L}$$
for some closed integral 1-current $\mathcal{L} \}.$ (16)

So the class of admissible deformations is defined as follows. Let $f \in L^q(\Omega, \mathbb{R}^3)$ and let $b \in \mathbb{Z}^3$ a fixed Burgers vector, then

$$\mathcal{F}^{b}(f) := \{ F \in L^{p}(\Omega, \mathbb{R}^{3 \times 3}) : -\operatorname{Div} F = f \text{ and } -\operatorname{Curl} F = b \otimes \mathcal{L}$$
for some closed integral 1-current $\mathcal{L} \}.$ (16)

The existence of a minimizer of \mathcal{W} in $\mathcal{F}^b(f)$ is provided by the following:

Theorem

Let p > 1 and $f \in L^q(\Omega, \mathbb{R}^3)$ with q > 3. If \mathcal{W} satisfies (...), then there exists a minimizer $F \in \mathcal{F}^b(f)$ of \mathcal{W} .

So the class of admissible deformations is defined as follows. Let $f \in L^q(\Omega, \mathbb{R}^3)$ and let $b \in \mathbb{Z}^3$ a fixed Burgers vector, then

$$\mathcal{F}^{b}(f) := \{ F \in L^{p}(\Omega, \mathbb{R}^{3 \times 3}) : -\operatorname{Div} F = f \text{ and } -\operatorname{Curl} F = b \otimes \mathcal{L}$$
for some closed integral 1-current $\mathcal{L} \}.$ (16)

The existence of a minimizer of \mathcal{W} in $\mathcal{F}^b(f)$ is provided by the following:

Theorem

Let p > 1 and $f \in L^q(\Omega, \mathbb{R}^3)$ with q > 3. If \mathcal{W} satisfies (...), then there exists a minimizer $F \in \mathcal{F}^b(f)$ of \mathcal{W} .

A consequence of Helmoltz decomposition implies that, if $F\in \mathcal{F}^b(f)$, then F can be written as

$$F = Dv + Du + Dh,$$

where $v \in W_0^{2,q}(\Omega, \mathbb{R}^3)$ with $\Delta v = f$, $u \in W^{1,p}(\Omega, \mathbb{T}^3)$ is the function in Theorem 5, and $h \in C^{\infty}(\Omega, \mathbb{R}^3)$ is an harmonic map on Ω with some boundary conditions. The Sobolev embeddings Theorem provides $v \in C^1(\Omega, \mathbb{R}^3)$. To prove the existence result, we can use such decomposition for all the terms of a minimizing sequence $F_n = Dv_n + Du_n + Dh_n$. The coerciveness of the energy \mathcal{W}_e gives a-priori bounds on the L^p norms of all the minors of Dv_n , Du_n , and Dh_n , while the coerciveness of \mathcal{W}_{defect} gives an a-priori bound on the mass of the densities $\Lambda_{\mathcal{L}_n}$. In particular there exist $F \in L^p(\Omega, \mathbb{R}^{3\times 3})$, $A \in L^p(\Omega, \mathbb{R}^{3\times 3})$, and $D \in L^p(\Omega)$ such that

$$F_k
ightarrow F$$
 weakly in $L^p(\Omega, \mathbb{R}^{3 \times 3}),$ (17a)

$$\operatorname{adj} F_k o A$$
 weakly in $L^p(\Omega, \mathbb{R}^{3 \times 3}),$ (17b)

det
$$F_k
ightarrow D$$
 weakly in $L^p(\Omega)$. (17c)

and a measure $\Lambda \in \mathcal{M}_b(\Omega, \mathbb{R}^{3 \times 3})$ with

$$\Lambda_k \rightharpoonup \Lambda \quad \text{weakly* in } \mathcal{M}_b(\Omega, \mathbb{R}^{3 \times 3}), \tag{18}$$

where we have set $\Lambda_k = \Lambda_{\mathcal{L}_k} = - \operatorname{Curl} F_k$

To prove the existence result, we can use such decomposition for all the terms of a minimizing sequence $F_n = Dv_n + Du_n + Dh_n$. The coerciveness of the energy \mathcal{W}_e gives a-priori bounds on the L^p norms of all the minors of Dv_n , Du_n , and Dh_n , while the coerciveness of \mathcal{W}_{defect} gives an a-priori bound on the mass of the densities $\Lambda_{\mathcal{L}_n}$. In particular there exist $F \in L^p(\Omega, \mathbb{R}^{3\times 3})$, $A \in L^p(\Omega, \mathbb{R}^{3\times 3})$, and $D \in L^p(\Omega)$ such that

$$F_k
ightarrow F$$
 weakly in $L^p(\Omega, \mathbb{R}^{3 \times 3}),$ (17a)

$$\mathrm{adj}F_k
ightarrow A$$
 weakly in $L^p(\Omega, \mathbb{R}^{3 imes 3}),$ (17b)

det
$$F_k
ightarrow D$$
 weakly in $L^p(\Omega)$. (17c)

and a measure $\Lambda \in \mathcal{M}_b(\Omega, \mathbb{R}^{3 \times 3})$ with

$$\Lambda_k \rightharpoonup \Lambda \quad \text{weakly* in } \mathcal{M}_b(\Omega, \mathbb{R}^{3 \times 3}), \tag{18}$$

where we have set $\Lambda_k = \Lambda_{\mathcal{L}_k} = - \operatorname{Curl} F_k$ Theorem 5 and Lemma 6 provide

$$M(\partial \mathcal{G}_{v_n+u_n+h_n}) < C,$$

thanks to the regularity of v_n and h_n .

Then we can employ

Theorem

Let u_k be a sequence in $\mathcal{A}_p(\Omega, \mathbb{T}^3)$ such that $u_k \to u$ strongly in $L^p(\Omega, \mathbb{T}^3)$ and suppose that there exist functions $v_{\beta}^{\alpha} \in L^p(\Omega)$ such that $M_{\overline{\alpha}}^{\beta}(Du_k) \to v_{\alpha}^{\beta}$ for all multi-indices α and β with $|\alpha| + |\beta| = 3$. If

$$M(\partial \mathcal{G}_{u_k}) < C < +\infty \tag{19}$$

for all k > 0, then $u \in \mathcal{A}_p(\Omega, \mathbb{T}^3)$ and $v_{\alpha}^{\beta} = M_{\bar{\alpha}}^{\beta}(Du)$.

to prove that $A = \operatorname{adj} F$, $D = \det F$.

Then we can employ

Theorem

Let u_k be a sequence in $\mathcal{A}_p(\Omega, \mathbb{T}^3)$ such that $u_k \to u$ strongly in $L^p(\Omega, \mathbb{T}^3)$ and suppose that there exist functions $v_{\beta}^{\alpha} \in L^p(\Omega)$ such that $M_{\alpha}^{\beta}(Du_k) \to v_{\alpha}^{\beta}$ for all multi-indices α and β with $|\alpha| + |\beta| = 3$. If

$$M(\partial \mathcal{G}_{u_k}) < C < +\infty \tag{19}$$

for all k > 0, then $u \in \mathcal{A}_p(\Omega, \mathbb{T}^3)$ and $v_{\alpha}^{\beta} = M_{\overline{\alpha}}^{\beta}(Du)$.

to prove that $A = \operatorname{adj} F$, $D = \det F$.

The fact that there exists a closed integral 1-current \mathcal{L} such that $\Lambda = \Lambda_{\mathcal{L}} = - \operatorname{Curl} F$ is an easy consequence of the compactness theorem for integral currents and of convergence (18). The conclusion then follows by lower semicontinuity.

• We need the regularity condition of f. In general if u is as in Theorem 5 and v is another function, it is difficult to obtain estimates for the boundary of \mathcal{G}_{u+v} better than (13).

- We need the regularity condition of f. In general if u is as in Theorem 5 and v is another function, it is difficult to obtain estimates for the boundary of \mathcal{G}_{u+v} better than (13).
- We have proved the result for a density ∧ of the form L ⊗ b. In particular all the Burgers vector of the cluster are integer multiple of b. What happens to a cluster with linearly independent Burgers vectors?

- We need the regularity condition of f. In general if u is as in Theorem 5 and v is another function, it is difficult to obtain estimates for the boundary of \mathcal{G}_{u+v} better than (13).
- We have proved the result for a density ∧ of the form L ⊗ b. In particular all the Burgers vector of the cluster are integer multiple of b. What happens to a cluster with linearly independent Burgers vectors?

Thank you for attention!