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Outline

We consider Dirichlet spectral problem in a bounded domain for
a second order singularly perturbed elliptic operator with locally
periodic coefficients. The talk will focus on the limit behaviour of
the first eigenpair. Our goals are

to describe the limit behaviour of the first eigenvalue and
the logarithmic asymptotics of the first eigenfunction;

to construct the second term of the asymptotics for a
(perturbed) convection-diffusion operator;

to address the problem of a choice of the solution to the
limit problem which is responsible for the eigenfunction
asymptotics, in the case of non-uniqueness.

A. Piatnitski First eigenpair asymptotics Page 2 of 30



Operator

In a smooth bounded domain Ω ⊂ R
d we consider the following

singularly perturbed elliptic operator:

Lεu = ε2aij(x , x/εα)
∂2u

∂xi∂xj
+ εbj(x , x/εα)

∂u
∂xj

+ c(x , x/εα)u.

Here ε > 0 is a small positive parameters, α > 0 is a given
number. We assume that

all the coefficients aij(x , y), bi(x , y) and c(x , y) are
[0,1]d -periodic in y functions;

the coefficient are smooth enough on Ω× T
d ;

the matrix a(x , y) is uniformly elliptic, that is,

a(x , y)ξ · ξ ≥ Λ|ξ|2

for some Λ > 0, all ξ ∈ R
d and all (x , y) ∈ Ω× T

d .
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Spectral problem

Spectral problem

We consider the Dirichlet spectral problem in Ω:

Lεu = λu, u = 0 on ∂Ω (1)

By the Krein-Rutman theorem, the principal eigenvalue λε
0 is

real and simple, and the principal eigenfunction uε
0 is positive

under a proper normalization.

Our goal is to study the limit behaviour of the principal eigenpair
(ground state), as ε → 0.
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Remarks

The first eigenpair (ground state) plays a crucial role when
studying the large time behavior of solutions to the
corresponding parabolic initial boundary problem. The first
eigenvalue characterizes an exponential growth or decay of a
typical solution, as t → ∞, while the corresponding
eigenfunction describes the limit profile of a normalized
solution.

Also, since in a typical case the first eigenfunction shows a
singular behavior, as ε → 0, in many applications it is important
to know the set of concentration points of uε, the so-called hot
spots. This concentration set might consist of one point, or
finite number of points, or a surface of positive codimension, or
it might have more complicated structure.
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Remarks

The asymptotic behaviour of the ground state depends crucially
on whether α > 1, or α < 1, or α = 1 (self-similar case).

Main difficulties

The operator Lε is non-selfadjoint;

Lε is singularly perturbed and at the same time has
oscillating coefficients;

Dirichlet boundary condition
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Existing results

Boundary value problems for singularly perturbed elliptic
operators have been widely studied in the existing literature.

regular degeneration M.Vishik, L.Lusternik ’57

the Dirichlet problem for a convection-diffusion operator
with a small diffusion and with a convection directed
outward at the domain boundary was studied for the first
time M.Freidlin and A.Wentzel ’70. They used the large
deviation techniques.

The large deviation principle have also been used for
studying the first eigenvalue of a second order elliptic
operator being a singular perturbation of a first order
operator, Yu. Kifer ’80, ’87.

ground state asymptotics of a singularly perturbed elliptic
operator on a compact Riemannian manifold, A.P. ’98.

A. Piatnitski First eigenpair asymptotics Page 7 of 30



Techniques

There are two main approaches to studying singularly
perturbed elliptic operator:

- large deviation principle;

- viscosity solution techniques.

We are going to use viscosity solution approach. It was
developed in the works of L.Evans, H.Ishii, P.Lions,
B.Perthame, and others.

Our approach is also based essentially on homogenization
results for first and second order nonlinear equations,
P.Souganidis, P. Lions, L.Evans, and others.
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WKB transformation

Since uε > 0 in Ω, we can represent uε as

uε(x) = e−Wε(x)/ε.

Then,
Wε = −ε log uε

We suppose that
max
Ω

uε = 1

Then
Wε ≥ 0 in Ω, min

x∈Ω
Wε = 0.
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Nonlinear equation

The function Wε satisfies the following equation

− εaij(x , x/εα)
∂2Wε

∂xi∂xj
+ H(∇Wε, x , x/εα) = λε (2)

with the Hamiltonian

H(p, x , y) = aij(x , y)pi pj − bj(x , y)pj + c(x , y)

and the boundary condition

Wε = +∞ on ∂Ω.
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Hamilton-Jacobi equation

Let H(p, x) be a function defined on R
d × Ω such that

- H(p, x) is continuous;

- H(p, x) is convex in p;

- H(p, x) ≥ m1|p|2 − C for some m1 > 0 and C.

Consider Hamilton-Jacobi equation

H(∇W (x), x) = λ in Ω. (3)

with the so called state constraint boundary condition

H(∇W (x), x) ≥ λ on ∂Ω. (4)

Both the equation and the boundary condition are understood
in viscosity sense.
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Hamilton-Jacobi equation

Equivalently, we can rewrite (3)-(4) in the form

H(∇W (x), x) ≤ λ in Ω (5)

H(∇W (x), x) ≥ λ in Ω, (6)

Definition

A continuous function W is a solution to (5) if for any x0 ∈ Ω
and C2(Ω) function φ such that W − φ attains a maximum at x0,
we have

H(∇φ(x0), x0) ≤ λ.

A continuous function W is a solution to (6) if for any x0 ∈ Ω
and C2(Ω) function φ such that W − φ attains a minimum at x0,
we have

H(∇φ(x0), x0) ≥ λ.
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Hamilton-Jacobi equation

Theorem

There exists a unique λ ∈ R such that problem (3)-(4) (or
(5)-(6)) has a solution.

We denote this λ by λH . Notice that a solution of problem
(3)-(4) with λ = λH need not be unique.
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Variational problem

Denote by L(ξ, x) the corresponding Lagrangian:

L(ξ, x) = max
p

{

ξ · p − H(p, x)
}

Lemma

λH = − lim
t→∞

1
t

inf
∫ t

0
L(η̇(s), η(s))ds

where the infimum is taken over all absolutely continuous
curves η : [0, t] −→ Ω.
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Main results. The case α = 1

Limit Hamiltonian

H(p, x) is the first eigenvalue (eigenvalue with the maximal real
part) of the problem

aij(x , y)
∂2ϑ

∂yi∂yj
+ (bj(x , y)− 2aij(x , y)pi )

∂ϑ

∂yj

+H(p, x , y)ϑ = H(p, x)ϑ, ϑ(y) is Y -periodic.
(7)

Theorem

The eigenvalues λε converge as ε → 0 to the limit λ, which is
the unique real number for which problem (3), (4) has a
viscosity solution. The functions Wε converge (along a
subsequence) to a limit W uniformly on compacts in Ω, and
every limit function W is a viscosity solution of (3), (4).
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The case α > 1

Limit Hamiltonian

For α > 1 the limit Hamiltonian is defined by

H(p, x) =
∫

Y
H(p, x , y)ϑ(y) dy (8)

where

H(p, x , y) = aij(x , y)pi pj − bj(x , y)pj + c(x , y),

and ϑ(y) is the unique Y−periodic solution of the equation

∂2

∂yi∂yj
(aij(x , y)ϑ) = 0

normalized by
∫

Y ϑ(y) dy = 1.
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The case 0 < α < 1

Limit Hamiltonian

If 0 < α < 1, then the limit Hamiltonian H(p, x) is the unique
number such that the problem

H(p +∇ϑ(y), x , y) = H(p, x) (9)

has a Y−periodic viscosity solution ϑ(y); here p ∈ R
N and

x ∈ Ω are parameters.
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Remarks

Remarks

For all α > 0 we can show that H(p, x) satisfies the continuity,
convexity and coerciveness conditions formulated above.

For α ≥ 1 the limit Hamiltonian is strictly convex in p.
For α < 1 this might fail to hold, and the Hamiltonian need not
be strictly convex.

The uniqueness of a limit point of Wε is a very interesting issue.
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Aubry set

Aubry set

AH =
{

y ∈ Ω : sup
δ>0

inf
(

∫ t
0(L(η̇, η) + λH)ds,

η(0) = η(t) = y , t > δ
)

= 0
}
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Convection diffusion equation

From now on we consider a particular case

Lεu = ε2aij(x , x/ε)
∂2u

∂xi∂xj
+ εbj(x , x/ε)

∂u
∂xj

.

Notice that α = 1.
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Effective drift

We define b̄(x) as follows:

b
j
(x) =

∫

Y
bj(x , y)θ∗(x , y)dy ,

where θ∗(x , y) is a periodic solution of

∂2

∂yi∂yj

(

aij(x , y)θ∗
)

− ∂

∂yj

(

bj(x , y)θ∗
)

= 0

normalized by
∫

Y
θ∗(x , y)dy = 1;

x being a parameter.
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Assumptions

We assume that

1. AH coincides with (a finite) set of hyperbolic fixed points of
the ODE ẋ = −b̄(x);

2. AH ⊂ Ω.

One can show that

∂H
∂pj

(0, x) = b̄j(x).
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Higher order terms of the asymptotics

Under assumptions 1.–2.

λH = 0,

and we want to construct the next term of the asymptotics of λε.
To this end we we denote the stationary points of the
vector-field b(x) by ξ1, . . . , ξN . By our assumptions all these
points belong to Ω, and their union coincides with the Aubry set
of H.
Define

Bij(ξm) =
∂b̄j

∂xi
(ξm), m = 1,2, . . . ,N.
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Higher order terms of the asymptotics. The result

We define σ(ξm) to be the sum of the negative real parts of the
eigenvalues of the matrix −Bij(ξm).

Theorem

Let α = 1 and c(x , y) = 0. Then under assumptions 1.–2.,

λε = εσ̄ + o(ε)

with σ̄ = max{σ(ξm) : m = 1, . . . ,N}.

Denote

dH−λH
(x , y) = inf

{

∫ t

0
(L(η̇, η)+λH)dτ, η(0) = y , η(t) = x , t > 0

}

.
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Higher order terms

Theorem

Let the maximum of σ(ξm) be attained at exactly one point ξ̄.
Then

◦ W (x) = dH(x , ξ̄), W (ξ̄) = 0.

◦ uε(ξ +
√
εz) → u(z) in C(K ) and weakly in H1(K ) for every

compact K , and the limit u is the unique positive
eigenfunction of the Ornstain-Uhlenbeck operator,

Qij ∂2u
∂zi∂zj

+ ziB
ij ∂u
∂zj

= σu in R
N , (10)

normalized by u(0) = 1; here Bij = Bij(ξ) and

Qij =
1
2

∂2H
∂pi∂pj

(0, ξ).
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Asymptotics in the presence of limit cycles

We proceed with studying operators of the form

Lεu = ε2aij(x , x/ε)
∂2u

∂xi∂xj
+ εbj(x , x/ε)

∂u
∂xj

+ c(x , x/ε)u,

and assume that the ODE

ẋ = b(x)

has one or more hyperbolic limit cycles in Ω. It can also have
some stationary points. Hyperbolicity means that the linearized
Poincare map does not have eigenvalues on the unit circle.

Notice that this is again a particular case because the
coefficient c(x , x/ε) does not have a large parameter 1/ε in
front of it.
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Definition of σ1 and σ2

We assume that the Aubry set AH of H in Ω consists of finite
number of limit cycles and, probably, stationary points of the
vector field b.
If ξj is a zero of b (stationary point of the ODE) then we set

σ1,j(ξ) is the sum of negative real parts of the eigenvalues of
the matrix

(

−∂b
i

∂xj
(ξj)

)

i ,j=1,N
,

and

σ2,j(ξ) =

∫

Y
c(ξj , y)θ

∗(ξj , y) dy .
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Definition of σ1 and σ2

If ξj lies on a limit cycle then

σ1(ξj) =
1
P

∑

|Λk(ξj )|<1

log |Λk (ξj)|,

where P > 0 is the minimal period of the cycle,
and Λk (ξj) are the eigenvalues of the linearized Poincaré map
such that |Λk (ξj)| < 1;
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Definition of σ1 and σ2

σ2(ξj) is given by

σ2(ξj) =
1
P

∫ P

0

∫

Y
c
(

x(t), y
)

θ∗
(

x(t), y
)

dy dt

with x(t) solving ẋ = −b(x), x(0) = ξj .
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The result

Theorem

Under the above assumptions on the coefficients we have

lim
ε→0

λε = σ := max
j

{

σ1(ξj) + σ2(ξj); ξj ∈ AH

}

.

if the maximum in (6) is attained at exactly one connected
component of the Aubry set (fixed point or limit cycle) then
Wε converge uniformly on compacts in Ω to the viscosity
solution of

H(∇W , x) = λH in Ω, H(∇W , x) ≥ λH on ∂Ω

vanishing on the aforementioned component of the Aubry
set.
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