Local and global minimality results for a nonlocal isoperimetric problem

Massimiliano Morini

(Collaborators: E. Acerbi, N. Fusco, P. Sternberg)

Dipartimento di Matematica e Informatica Università di Parma

Lisbon, July 31, 2014

Massimiliano Morini Local and global minimality ... 1/37

Massimiliano Morini Local and global minimality ... 2/37

Polymer = molecular chain made up of several molecules with high chemical affinity

Polymer = molecular chain made up of several molecules with high chemical affinity

Diblock Copolymer = complex macromolecule made up of two different molecular chains chemically bonded

····-A-A-A-A-A-A-B-B-B-B-A-A-A-B-B-B-B-····

Polymer = molecular chain made up of several molecules with high chemical affinity

Diblock Copolymer = complex macromolecule made up of two different molecular chains chemically bonded

···-A-A-A-A-A-A-B-B-B-A-A-A-B-B-B-B-····

Chemical incompatibility between the non-affine subchains

···-A-A-A-A-A-A-A-A-B-B-B-B-B-B-B-···

····-A-A-A-A-A-A-A-A-B-B-B-B-B-B-B-···

Chemical incompatibility between the phases \implies tendency to macroscopic phase separation

····-A-A-A-A-A-A-A-A-B-B-B-B-B-B-B-····

Chemical incompatibility between the phases \implies tendency to macroscopic phase separation

Chemical bonds between the non-affine subchains \implies long range effects, pattern formation

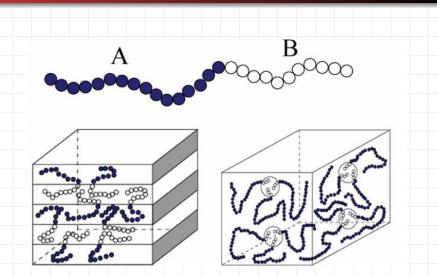
····-A-A-A-A-A-A-A-A-B-B-B-B-B-B-B-····

Chemical incompatibility between the phases \implies tendency to macroscopic phase separation

Chemical bonds between the non-affine subchains \implies long range effects, pattern formation

different volume fractions \implies different nanostructure

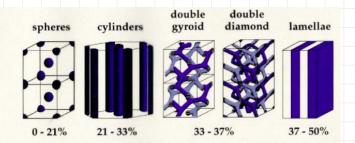
Phase boundaries for diblocks



Picture from an article by Choksi, Peletier and Willams 2009

Massimiliano Morini Local and global minimality ... 4/37

Tendency towards *periodic* arrays of interfaces– observed experimentally and numerically.



increasing volume fraction of minority phase polymer

Picture from Edwin Thomas' talk at MSRI 1999

Massimiliano Morini Local and global minimality ... 5/37

Denote by $u: \Omega \rightarrow \mathbb{R}$ the function describing the density:

 $\begin{cases} u(x) \simeq 1 & \text{on phase } A \\ u(x) \simeq -1 & \text{on phase } B \end{cases} \qquad m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \qquad \text{fixed}$

Denote by $u: \Omega \to \mathbb{R}$ the function describing the density:

 $\begin{cases} u(x) \simeq 1 & \text{on phase } A \\ u(x) \simeq -1 & \text{on phase } B \end{cases} \qquad \qquad m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \qquad \text{fixed}$

$$\mathcal{E}_{\varepsilon}(u) = \varepsilon \int_{\Omega} |\nabla u|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 dx + \gamma NL(u)$$

Denote by $u: \Omega \to \mathbb{R}$ the function describing the density:

 $\begin{cases} u(x) \simeq 1 & \text{on phase } A \\ u(x) \simeq -1 & \text{on phase } B \end{cases} \qquad \qquad m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \qquad \text{fixed}$

$$\mathcal{E}_{\varepsilon}(u) = \varepsilon \int_{\Omega} |\nabla u|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 dx + \gamma NL(u)$$

where

$$NL(u) := \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(x) u(y) dx dy.$$

Denote by $u: \Omega \rightarrow \mathbb{R}$ the function describing the density:

 $\begin{cases} u(x) \simeq 1 & \text{on phase } A \\ u(x) \simeq -1 & \text{on phase } B \end{cases} \qquad \qquad m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \qquad \text{fixed}$

$$\mathcal{E}_{\varepsilon}(u) = \varepsilon \int_{\Omega} |\nabla u|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1 - u^2)^2 dx + \gamma NL(u)$$

where

$$NL(u) := \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(x) u(y) dx dy$$
.

Here G_{Ω} is the Green's function defined by

$$\begin{cases} -\Delta_y G_{\Omega}(x, \cdot) = \delta_x - \frac{1}{|\Omega|} & \text{in } \Omega, \\ \int_{\Omega} G_{\Omega}(x, y) dy = 0, \\ \text{PBC or NBC} \end{cases}$$

Denote by $u: \Omega \to \mathbb{R}$ the function describing the density:

 $\begin{cases} u(x) \simeq 1 & \text{on phase } A \\ u(x) \simeq -1 & \text{on phase } B \end{cases} \qquad \qquad m = \frac{1}{|\Omega|} \int_{\Omega} u \, dx \qquad \text{fixed}$

$$\mathcal{E}_{\varepsilon}(u) = \varepsilon \int_{\Omega} |\nabla u|^2 dx + \frac{1}{\varepsilon} \int_{\Omega} (1-u^2)^2 dx + \gamma NL(u)$$

where

$$NL(u) := \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(x) u(y) dx dy$$
.

Here G_{Ω} is the Green's function defined by

$$\begin{cases} -\Delta_{y} G_{\Omega}(x, \cdot) = \delta_{x} - \frac{1}{|\Omega|} & \text{in } \Omega \\ \int_{\Omega} G_{\Omega}(x, y) dy = 0, \\ \text{PBC or NBC} \end{cases}$$

and $\Omega = \mathbb{T}^N$ (PBC) or Ω is bounded and (sufficiently) smooth (NBC)

The Ohta-Kawasaki functional: the potential v

Setting

$$v(x) := \int_{\Omega} G_{\Omega}(x, y) u(y) \, dy \, ,$$

we have that v solves

where m is the prescribed average of u

$$m := \int_{\Omega} u \, dx$$

The Ohta-Kawasaki functional: the potential v

Setting

$$v(x) := \int_{\Omega} G_{\Omega}(x, y) u(y) \, dy \, ,$$

we have that v solves

$$\begin{cases} -\Delta v = u - m & \text{in } \Omega, \\ \int_{\Omega} v \, dx = 0, \\ \text{PBC or NBC} \end{cases}$$

where m is the prescribed average of u

$$m := \int_{\Omega} u \, dx$$

The Ohta-Kawasaki functional: the potential v

Setting

$$v(x) := \int_{\Omega} G_{\Omega}(x, y) u(y) \, dy \, ,$$

we have that v solves

$$\begin{cases} -\Delta v = u - m & \text{in } \Omega, \\ \int_{\Omega} v \, dx = 0, \\ \text{PBC or NBC} \end{cases}$$

where m is the prescribed average of u

$$m:=\int_{\Omega} u\,dx$$

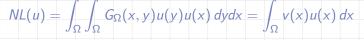
Note that

 $NL(u) = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy dx = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy dx$

Remark: We have that

 $\nabla \mathbf{v} \|_{\mathcal{L}^{2}(\Omega)} = \sup \left\{ \left| (u - m) \rho \, d\mathbf{x} : \rho \in H^{1}(\Omega), \| \nabla \varphi \|_{\mathcal{L}^{2}(\Omega)} = 1 \right\}$

Note that



Remark: We have that

 $\|\nabla \mathbf{v}\|_{\mathcal{L}^{2}(\Omega)} = \sup\left\{ \int_{\Omega} (u-m)\rho \, d\mathbf{x} : \rho \in H^{1}(\Omega), \|\nabla \varphi\|_{\mathcal{L}^{2}(\Omega)} = 1 \right\}$

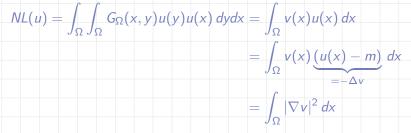
Note that

 $NL(u) = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy \, dx = \int_{\Omega} v(x) u(x) \, dx$ $= \int_{\Omega} v(x) \underbrace{(u(x) - m)}_{= -\Delta v} \, dx$ $= \int_{\Omega} \nabla v |^{2} \, dx$

Remark: We have that

 $\|\nabla \mathbf{v}\|_{\mathcal{L}^{1}(\Omega)} = \sup\left\{ \int_{\Omega} (u-m)\rho \, d\mathbf{x} : \rho \in H^{1}(\Omega), \|\nabla \varphi\|_{\mathcal{L}^{2}(\Omega)} = 1 \right\}$

Note that



Remark: We have that

$$\|\nabla \mathbf{v}\|_{\mathcal{L}(\Omega)} = \sup\left\{ \int_{\Omega} (u - m) \rho \, d\mathbf{x} : \rho \in H^{1}(\Omega), \|\nabla \varphi\|_{\mathcal{L}(\Omega)} = 1 \right\}$$

Note that

 $NL(u) = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy \, dx = \int_{\Omega} v(x) u(x) \, dx$ $= \int_{\Omega} v(x) \underbrace{(u(x) - m)}_{= -\Delta v} \, dx$ $= \int_{\Omega} |\nabla v|^2 \, dx$

Remark: We have that

$$\|\nabla v\|_{L^{2}(\Omega)} = \sup\left\{\int_{\Omega} (u-m)\varphi \, dx : \varphi \in H^{1}(\Omega), \|\nabla \varphi\|_{L^{2}(\Omega)} = 1\right\}$$

Note that

$$NL(u) = \int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(y) u(x) \, dy \, dx = \int_{\Omega} v(x) u(x) \, dx$$
$$= \int_{\Omega} v(x) \underbrace{(u(x) - m)}_{= -\Delta v} \, dx$$
$$= \int_{\Omega} |\nabla v|^2 \, dx$$

Remark: We have that

 $\|\nabla v\|_{L^{2}(\Omega)} = \sup\left\{\int_{\Omega} (u-m)\varphi \, dx : \varphi \in H^{1}(\Omega), \|\nabla \varphi\|_{L^{2}(\Omega)} = 1\right\}$

The nonlocal isoperimetric problem–the $\varepsilon \rightarrow 0$ limit of O-K

The nonlocal isoperimetric problem–the $\varepsilon \rightarrow 0$ limit of O-K

The nonlocal isoperimetric problem (NLIP) is given by

minimize $J(u) := \operatorname{Per}_{\Omega} \left(\{ x : u(x) = 1 \} \right) + \gamma \int_{\Omega} |\nabla v|^2 dx$, (NLIP)

over all $u \in BV(\Omega, \{\pm 1\})$ satisfying

$$\oint_{\Omega} u \, dx = m$$

and v satisfying

 $\begin{cases} -\Delta v = u - m \quad \text{in } \Omega, \\ \int_{\Omega} v \, dx = 0, \\ \text{PBC or NBC} \end{cases}$

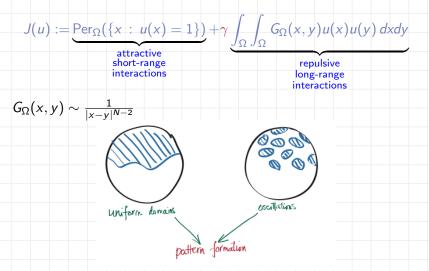
NLIP- A 'fight' of low surface area versus high oscillation

 $J(u) := \underbrace{\operatorname{Per}_{\Omega}(\{x : u(x) = 1\})}_{\operatorname{attractive}} + \gamma \underbrace{\int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(x) u(y) \, dx dy}_{\operatorname{attractive}}$ short-range repulsive interactions long-range interactions

NLIP- A 'fight' of low surface area versus high oscillation

 $J(u) := \underbrace{\operatorname{Per}_{\Omega}(\{x : u(x) = 1\})}_{\operatorname{attractive}} + \gamma \underbrace{\int_{\Omega} \int_{\Omega} G_{\Omega}(x, y) u(x) u(y) \, dx dy}_{\operatorname{attractive}}$ short-range repulsive interactions long-range interactions $G_{\Omega}(x,y) \sim \frac{1}{|x-y|^{N-2}}$

NLIP- A 'fight' of low surface area versus high oscillation



NLIP is interesting as a canonical nonlocal perturbation of the classical isoperimetric problem; and as a

model for energy-driven pattern formation.

The Nonlocal Isoperimetric Problem (NLIP)

We rewrite the functional in a more geometric fashion:

The Nonlocal Isoperimetric Problem (NLIP)

We rewrite the functional in a more geometric fashion:

$$J(E) = \operatorname{Per}_{\Omega}(E) + \gamma \int_{\Omega} |\nabla v_E|^2 \, dx$$

where

$$\begin{cases} -\Delta v_E = u_E - \int u_E \, dx & \text{in } \Omega \\ \int_{\Omega} v_E = 0 \\ \text{PBC or NBC} \end{cases}$$

and $u_E := \chi_E - \chi_{E^c}$.

The Nonlocal Isoperimetric Problem (NLIP)

We rewrite the functional in a more geometric fashion:

$$J(E) = \operatorname{Per}_{\Omega}(E) + \gamma \int_{\Omega} |\nabla v_E|^2 \, dx$$

where

$$\begin{cases} -\Delta v_E = u_E - \int u_E \, dx & \text{in } \Omega \\ \int_{\Omega} v_E = 0 \\ \text{PBC or NBC} \end{cases}$$

and $u_E := \chi_E - \chi_{E^c}$.

$\min \{J(E) : E \subset \Omega, |E| = m\}$ (NLIP)

Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of $\mathcal{E}_{\varepsilon}$ and of *J* (almost) periodic?

True in one dimension (Muller, 1993);

Partial results in higher dimensions (Alberti-Cheksi-Ottb, 2009; Spadaro, 2009) --- regulatribution of energy

Droplet minimizers: Choksi&Peletier Muratov, Goldman Muratov&Serfaty. Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!

Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of $\mathcal{E}_{\varepsilon}$ and of *J* (almost) periodic?

True in one dimension (Müller, 1993);

Droplet mihim zers: Choksi&Peletier Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!

Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of $\mathcal{E}_{\varepsilon}$ and of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)

Droplet mihim zers: Choksi&Peletier Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!

Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of $\mathcal{E}_{\varepsilon}$ and of J (almost) periodic?

True in one dimension (Müller, 1993);

Droplet minimizers: Choksi&Peletier Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!

Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of $\mathcal{E}_{\varepsilon}$ and of J (almost) periodic?

True in one dimension (Müller, 1993);

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!

Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of $\mathcal{E}_{\varepsilon}$ and of J (almost) periodic?

True in one dimension (Müller, 1993);

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty, Cicalese&Spadaro

There are VERY FEW examples of explicit global minimizers!

Mathematical challenges: local minimizers

Structure of local minimizers: Can we exhibit local minimizers of $\mathcal{E}_{\varepsilon}$ and of J that look like lamellae, droplets, gyroids, cylinders....?

Choksi&Sternberg 2007: computation of $\partial^2 J$ at critical points

Ren&Wei, 2002–2008 construction of stable critical configurations with some of the interesting patterns shown before for the energy J.

Mathematical challenges: local minimizers

Structure of local minimizers: Can we exhibit local minimizers of $\mathcal{E}_{\varepsilon}$ and of J that look like lamellae, droplets, gyroids, cylinders....? Can we provide sufficiency conditions for local minimality?

Choksi&Sternberg 2007: computation of $\partial^2 J$ at critical points

Ren&Wei, 2002–2008 construction of stable critical configurations with some of the interesting patterns shown before for the energy J.

Mathematical challenges: local minimizers

Structure of local minimizers: Can we exhibit local minimizers of $\mathcal{E}_{\varepsilon}$ and of J that look like lamellae, droplets, gyroids, cylinders....? Can we provide sufficiency conditions for local minimality?

Choksi&Sternberg, 2007: computation of $\partial^2 J$ at critical points

Ren&Wei, 2002–2008 construction of stable critical configurations with some of the interesting patterns shown before for the energy J.

Structure of local minimizers: Can we exhibit local minimizers of $\mathcal{E}_{\varepsilon}$ and of J that look like lamellae, droplets, gyroids, cylinders....? Can we provide sufficiency conditions for local minimality?

Choksi&Sternberg, 2007: computation of $\partial^2 J$ at critical points

Ren&Wei, 2002–2008: construction of stable critical configurations with some of the interesting patterns shown before for the energy J.

The link is provided via Γ -convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizers of F_k for k large enough.

Plan: • show that $\frac{\partial^2 J}{\partial r} > 0 \Rightarrow$ a critical point is an isclated $\frac{L^2}{r} = \frac{1}{r} =$

- thus the known stable critical configurations are isolated
 - L'-local minimizers;
- by Kohn&Steinberg theory such configurations can be lifted to
- -Ideally minimizing configurations for the diffuse energy $\mathcal{E}_arepsilon$

The link is provided via Γ -convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizers of F_k for k large enough.

- show that 3² / > 0 -> a critical point is an isolated L¹-local minimizer;
- thus the known stable critical configurations are isolated
 - L'-local minimizers;
- by Kohn&Stemberg theory such configurations dan be lifted to
- . Ideally minimizing configurations for the diffuse energy $\mathcal{E}_arepsilon$

The link is provided via **Γ**-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizers of F_k for k large enough.

- show that ∂²J > 0⇒ a critical point is an isolated L¹-local minimizer;
- thus the known stable critical configurations are isolated
 - L'-iocai minimizers;
- by Kohn&Steinberg theory such configurations can be lifted to
- -Ideally minimizing configurations for the diffuse energy $\mathcal{E}_arepsilon$

The link is provided via **Γ**-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizers of F_k for k large enough.

- show that ∂²J > 0⇒ a critical point is an isolated L¹-local minimizer;
- thus, the known stable critical configurations are isolated L¹-local minimizers;
- by Kohn&Steinberg theory such configurations can be lifted to locally minimizing configurations for the diffuse energy $\mathcal{E}_{\varepsilon}$

The link is provided via **Γ**-convergence

Theorem (Kohn-Sternberg)

Let (X, d) be a metric space and let $(F_k)_k$ be a sequence of lower semicontinuous and equi-coercive functionals from X to $\mathbb{R} \cup \{+\infty\}$. Assume that $F_k \xrightarrow{\Gamma(d)} F$ and let x be an isolated local minimizer of F. Then there exist $x_k \to x$ such that x_k is a local minimizers of F_k for k large enough.

- show that ∂²J > 0⇒ a critical point is an isolated L¹-local minimizer;
- thus, the known stable critical configurations are isolated L¹-local minimizers;
- by Kohn&Sternberg theory such configurations can be lifted to locally minimizing configurations for the diffuse energy ε_ε.

Critical points

Recall

Critical points

Recall

 $J(E) = \operatorname{Per}_{\Omega}(E) + \gamma \int_{\Omega} |\nabla v_E|^2 \, dx$

Recall

$$J(E) = \operatorname{Per}_{\Omega}(E) + \gamma \int_{\Omega} |\nabla v_E|^2 dx$$

The Euler-Lagrange equation for C^2 minimizers of J(E) with a volume constraint

$$(E.L.) \qquad \qquad H_{\partial E}(x) + 4\gamma v_E(x) = \lambda \qquad \text{on } \partial E$$

where $H_{\partial E} =$ sum of principal curvatures

Distance between (equivalence classes) of sets:

Distance between (equivalence classes) of sets:

• NBC case:

 $d(E,F):=|E\triangle F|.$

Distance between (equivalence classes) of sets:

• NBC case:

$$d(E,F):=|E\triangle F|.$$

• PBC case:

$$d(E,F) = \min_{\tau} |E \triangle (F + \tau)|$$

Distance between (equivalence classes) of sets:

• NBC case:

$$d(E,F):=|E\triangle F|.$$

PBC case:

$$d(E,F) = \min_{\tau} |E \triangle (F + \tau)|$$

Natural definition: $E \subset \Omega$, is a (strict) local minimizer if $\exists \delta > 0$ s.t.

J(F) > J(E)

whenever $F \subset \Omega$ with $0 < d(E, F) < \delta$ and |F| = |E|

Regularity of local minimizers

Easy fact:

 $\left|\int_{\Omega} |\nabla v_{E}|^{2} dx - \int_{\Omega} |\nabla v_{F}|^{2} dx\right| \leq c |E \Delta F|$

Regularity of local minimizers

Easy fact:

$$\left|\int_{\Omega} |\nabla v_{E}|^{2} dx - \int_{\Omega} |\nabla v_{F}|^{2} dx\right| \leq c |E \Delta F|$$

Another fact:

E is a minimizer with volume constraint \leftrightarrow

E is a minimizer of $J(F) + \Lambda ||F| - |E||$ for some large Λ

Regularity of local minimizers

Easy fact:

$$\left|\int_{\Omega} |\nabla v_{E}|^{2} dx - \int_{\Omega} |\nabla v_{F}|^{2} dx\right| \leq c |E \Delta F|$$

Another fact:

E is a minimizer with volume constraint \leftrightarrow

E is a minimizer of $J(F) + \Lambda ||F| - |E||$ for some large Λ

Theorem (Sternberg-Topaloglu (2011))

If $E \subset \mathbb{T}^n$ is a local minimizer of J, then $\partial E \setminus \Sigma$ is $C^{3,\alpha}$, for any $\alpha < 1$, and Σ is a closed set such that $\dim_{\mathcal{H}}(\Sigma) \leq n-8$

Massimiliano Morini Local and global minimality ... 18/37

Let $E \in C^2$ be critical and fix a C^2 vector field $X : \Omega \mapsto \Omega$. Then, let us consider

 $\Phi: \Omega \times (-1,1) \mapsto \Omega$ the associated flow

$$\frac{\partial \Phi}{\partial t} = X(\Phi), \qquad \Phi(x,0) = x$$

and set $E_t := \Phi(\cdot, t)(E)$,

Let $E \in C^2$ be critical and fix a C^2 vector field $X : \Omega \mapsto \Omega$. Then, let us consider

 $\Phi:\Omega\times(-1,1)\mapsto\Omega$ the associated flow

$$\frac{\partial \Phi}{\partial t} = X(\Phi), \qquad \Phi(x,0) = x$$

and set $E_t := \Phi(\cdot, t)(E)$,

$$\frac{d^2}{dt^2}J(E_t)\Big|_{t=0}$$

Let $E \in C^2$ be critical and fix a C^2 vector field $X : \Omega \mapsto \Omega$. Then, let us consider

 $\Phi: \Omega \times (-1,1) \mapsto \Omega$ the associated flow

$$\frac{\partial \Phi}{\partial t} = X(\Phi), \qquad \Phi(x,0) = x$$

and set $E_t := \Phi(\cdot, t)(E)$,

$$\frac{d^2}{dt^2}J(E_t)\Big|_{t=0}$$

Assume that

 $|E_t| = |E|.$

Computation of the second variation

Theorem (Choksi-Sternberg 2007)

Here, G(x,

For, say $\Omega = \mathbb{T}^n$ and $f := X \cdot \nu_E$, one can compute second variation

$$\partial^{2} J(f) := \underbrace{\int_{\partial E} \left(|\nabla_{\partial E} f|^{2} - |B|^{2} f^{2} \right) d\mathcal{H}^{n-1}}_{standard second variation of area}$$

$$\underbrace{8\gamma \int_{\partial E} \int_{\partial E} G(x, y) f(x) f(y) d\mathcal{H}_{x}^{n-1} d\mathcal{H}_{y}^{n-1}}_{nonlocal contribution}$$

$$+ \underbrace{4\gamma \int_{\partial E} \nabla v \cdot \nu f^{2} d\mathcal{H}^{n-1}}_{nonlocal contribution}.$$

$$y) = Green's function for (-) Laplacian.$$

Massimiliano Morini Local and global minimality ... 19/37

Since $J(E) = J(E + t\tau)$

Since $J(E) = J(E + t\tau)$

$$\implies \partial^2 J(E)[\tau \cdot \nu_E(x)] = 0$$
 for all τ

Since $J(E) = J(E + t\tau)$

$$\implies \partial^2 J(E)[\tau \cdot \nu_E(x)] = 0$$
 for all τ

Let us define $T = \operatorname{span}\{\nu_1, \dots, \nu_n\}$ and

 $T^{\perp} = \{f \in H^1(\partial E) : \int f = \int f \nu_i = 0\}$

Since $J(E) = J(E + t\tau)$

$$\implies \partial^2 J(E)[au \cdot
u_E(x)] = 0$$
 for all au

Let us define $T = \operatorname{span}\{\nu_1, \dots, \nu_n\}$ and

$$T^{\perp} = \{f \in H^1(\partial E) : \int f = \int f
u_i = 0\}$$

Strict stability then means

$$\partial^2 J(E)[f] > 0 \quad \forall f \in \mathcal{T}^\perp \setminus \{0\}$$

L¹ local minimality via second variation

Theorem (Acerbi-Fusco-M., Comm. Math. Phys 2013)

Let $E \subset \mathbb{T}^n$ be a regular critical set of J such that

 $\partial^2 J(E)[f] > 0 \qquad \forall f \in T^{\perp}(\partial E) \setminus \{0\} \;.$

There exists $\delta > 0$ s.t. for all $F \subset \mathbb{T}^n$ with |F| = |E| and $d(E, F) < \delta$

 $J(F) \geq J(E) + C_0 d(E, F)^2 .$

L¹ local minimality via second variation

Theorem (Acerbi-Fusco-M., Comm. Math. Phys 2013)

Let $E \subset \mathbb{T}^n$ be a regular critical set of J such that

 $\partial^2 J(E)[f] > 0 \qquad \forall f \in T^{\perp}(\partial E) \setminus \{0\} \;.$

There exists $\delta > 0$ s.t. for all $F \subset \mathbb{T}^n$ with |F| = |E| and $d(E, F) < \delta$

 $J(F) \geq J(E) + C_0 d(E, F)^2 .$

Extension to NBC: Julin-Pisante, 2013

Consequences: the Ohta-Kawasaki energy

Proposition

If E is a regular critical point of J with $\partial^2 J(E) > 0$, then there exists a family $\{u_{\varepsilon}\}_{\varepsilon < \varepsilon_0}$ of strict local minimizers of the diffused energy $\mathcal{E}_{\varepsilon}$ with $\int_{\mathbb{T}^n} u_{\varepsilon} dx = \int_{\mathbb{T}^n} u_E dx$, s.t.

 $u_{\varepsilon} \rightarrow u_E$ in $L^1(\mathbb{T}^n)$

as $\varepsilon \rightarrow 0$.

Case $\gamma = 0$: the periodic isoperimetric problem

Corollary

Let $E \subset \mathbb{T}^n$ be smooth open set with ∂E a constant mean curvature surface. If

 $\int_{\partial E} \left(|\nabla_{\partial E} f|^2 - |B_{\partial E}|^2 f^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \forall f \in T^{\perp}(\partial E) \setminus \{0\},$

then there exist δ , C > 0 s.t. for $F \subset \mathbb{T}^n$, with |F| = |E| and $d(E, F) < \delta$

 $P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E,F)]^2$.

Case $\gamma = 0$: the periodic isoperimetric problem

Corollary

Let $E \subset \mathbb{T}^n$ be smooth open set with ∂E a constant mean curvature surface. If

 $\int_{\partial E} \left(|\nabla_{\partial E} f|^2 - |B_{\partial E}|^2 f^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \forall f \in T^{\perp}(\partial E) \setminus \{0\},$

then there exist δ , C > 0 s.t. for $F \subset \mathbb{T}^n$, with |F| = |E| and $d(E, F) < \delta$

 $P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E,F)]^2$.

• B.White, 1994: local minimality w.r.t. L^{∞} perturbations

Case $\gamma = 0$: the periodic isoperimetric problem

Corollary

Let $E \subset \mathbb{T}^n$ be smooth open set with ∂E a constant mean curvature surface. If

 $\int_{\partial E} \left(|\nabla_{\partial E} f|^2 - |B_{\partial E}|^2 f^2 \right) d\mathcal{H}^{n-1} > 0 \qquad \forall f \in T^{\perp}(\partial E) \setminus \{0\},$

then there exist δ , C > 0 s.t. for $F \subset \mathbb{T}^n$, with |F| = |E| and $d(E, F) < \delta$

 $P_{\mathbb{T}^n}(F) \geq P_{\mathbb{T}^n}(E) + C[d(E,F)]^2$.

• B.White, 1994: local minimality w.r.t. L^{∞} perturbations

• Morgan-Ros, 2010: local minimality w.r.t. L^1 perturbations but for $n \leq 7$ and without quantitative estimate

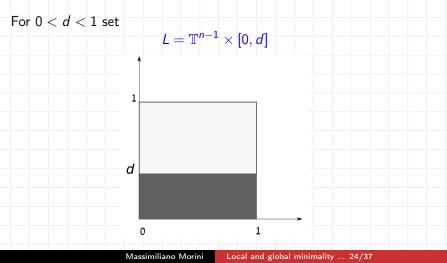
Application: Global minimality of the single lamella

Application: Global minimality of the single lamella

(P) Min
$$\left\{ J_{\gamma}(E) = P_{\mathbb{T}^n}(E) + \gamma \int_{\mathbb{T}^n} |\nabla v_E|^2 dx, \quad |E| = d \right\}$$

Application: Global minimality of the single lamella





Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Sketch of the proof: Let E_{γ} be a minimizer of J_{γ} .

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Sketch of the proof: Let E_{γ} be a minimizer of J_{γ} .

Step 1: As $\gamma \to 0$ we have $E_{\gamma} \to L$ in L^1 .

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Sketch of the proof: Let E_{γ} be a minimizer of J_{γ} .

Step 1: As $\gamma \to 0$ we have $E_{\gamma} \to L$ in L^1 .

Step 2: For γ small *L* is strictly stable for J_{γ} .

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of coordinates, global minimizer of the periodic isoperimetric problem. Then L is also the unique global minimizer of (\mathcal{P}), provided γ is sufficiently small.

Sketch of the proof: Let E_{γ} be a minimizer of J_{γ} .

Step 1: As $\gamma \to 0$ we have $E_{\gamma} \to L$ in L^1 .

Step 2: For γ small *L* is strictly stable for J_{γ} .

Step 4: For γ small *L* is an L^1 isolated local minimizer, uniformly in γ . Thus $E_{\gamma} = L$ for γ small.

Let n = 2. Theorem + Howards-Hutchings-Morgan, 1999

If $\frac{1}{\pi} < d < 1 - \frac{1}{\pi}$, *L* is the unique global minimizer of (\mathcal{P}) in \mathbb{T}^2 provided γ is small (see also Sternberg-Topaloglu, 2011)

1

Massimiliano Morini Local and global minimality ... 26/37

Let n = 2. Theorem + Howards-Hutchings-Morgan, 1999

If $\frac{1}{\pi} < d < 1 - \frac{1}{\pi}$, *L* is the unique global minimizer of (\mathcal{P}) in \mathbb{T}^2 provided γ is small (see also Sternberg-Topaloglu, 2011)

1

Let n = 3. Theorem + a result of Hadwiger, 1972

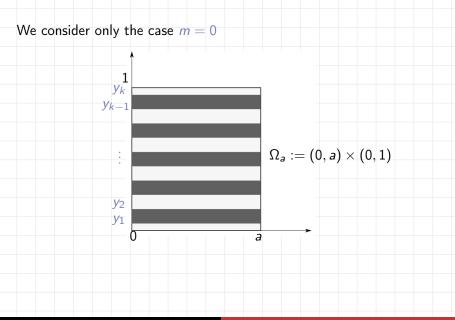
There exist $\varepsilon_0, \gamma_0 > 0$ s.t. if $\frac{1}{2} - \varepsilon_0 < d < \frac{1}{2} + \varepsilon_0, \ 0 \leq \gamma < \gamma_0$

L is the unique global minimizer of (\mathcal{P}) in \mathbb{T}^3

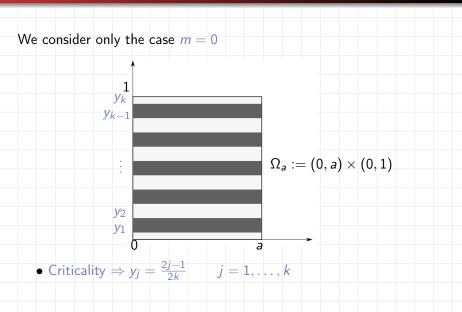
Critical 2d k-lamellar patterns

We consider only the case m = 0

Critical 2d k-lamellar patterns



Critical 2d k-lamellar patterns



Theorem (M.-Sternberg, 2013)

For any positive integer k,

Massimiliano Morini Local and global minimality ... 28/37

Theorem (M.-Sternberg, 2013)

For any positive integer k, if

 $a < \pi \sqrt{\frac{k}{2\gamma}},$

Theorem (M.-Sternberg, 2013)

For any positive integer k, if

$a < \pi \sqrt{\frac{k}{2\gamma}},$

then the k-lamellar critical point u_k is an isolated L¹-local minimizer in $\Omega_a := (0, a) \times (0, 1)$;

Theorem (M.-Sternberg, 2013)

For any positive integer k, if

$$a < \pi \sqrt{rac{k}{2\gamma}},$$

then the k-lamellar critical point u_k is an isolated L¹-local minimizer in $\Omega_a := (0, a) \times (0, 1)$; i.e., there exist δ and C > 0 such that

$$J(w) \ge J(u_k) + C \|u_k - w\|_{L^1(\Omega_a)}^2$$

provided $||u_k - w||_{L^1(\Omega_a)} < \delta$ and $\int_{\Omega_a} w = \int_{\Omega_a} u_k$.

• Spectral analysis: $a < \pi \sqrt{\frac{k}{2\gamma}}$ implies that

 $\partial^2 J(u_k)[f] > 0$ for all $f \in H^1(\Gamma) \setminus 0$ with $\int_{\Gamma} f \, d\mathcal{H}^1 = 0$.

• Spectral analysis:
$$a < \pi \sqrt{rac{k}{2\gamma}}$$
 implies that

 $\partial^2 J(u_k)[f] > 0$ for all $f \in H^1(\Gamma) \setminus 0$ with $\int_{\Gamma} f \, d\mathcal{H}^1 = 0$.

• Extension of the Acerbi-Fusco-M.

$$\partial^2 J > 0 \Rightarrow L^1$$
-local minimality

result to the case of rectangular domain with NBC

• Spectral analysis:
$$a < \pi \sqrt{rac{k}{2\gamma}}$$
 implies that

 $\partial^2 J(u_k)[f] > 0$ for all $f \in H^1(\Gamma) \setminus 0$ with $\int_{\Gamma} f \, d\mathcal{H}^1 = 0$.

• Extension of the Acerbi-Fusco-M.

 $\partial^2 J > 0 \Rightarrow L^1$ -local minimality

result to the case of rectangular domain with NBC

 Remark: Morphological instability may only come from wriggling and corrugations:

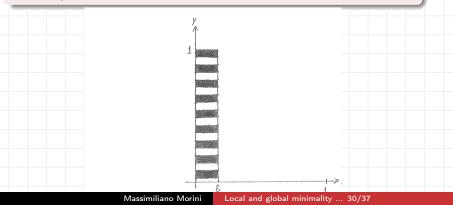
Cascade of lamellar global minimizers in thin rectangles

Theorem (M.-Sternberg, 2013)

Fix any $\gamma > 0$. Then for $k(\gamma)$ minimizing the 1d energy

$$J^{1d}(u_k)=k+\frac{\gamma}{12k^2},$$

 $u_{k(\gamma)}$ is the unique global minimizer of J in $(0, \varepsilon) \times (0, 1)$ for ε sufficiently small.



Step 1: Γ-convergence

Consider (NLIP) posed on a thin rectangle $\Omega_{\varepsilon} := (0, \varepsilon) \times (0, 1)$:

$$\min \quad J_{\Omega_{\varepsilon}}(u) := \operatorname{Per}_{\Omega_{\varepsilon}}\left(\{x : u(x) = 1\}\right) + \gamma \int_{\Omega_{\varepsilon}} |\nabla v|^2 dx,$$

under the constraint $\int_{\Omega_c} u = 0$.

After rescaling onto the (fixed) unit square Ω_1 and dividing by ε one checks that J_{Ω_2} F-converges as $\varepsilon \to 0$ to the one-dimensional energy

$$\int^{1d}(u) := \# \text{ of jumps} + \gamma \int_{0}^{1} v_{y}^{2} dy$$

for $u \in \mathbb{R} \setminus \{(0, 1), \{-1\}\}$, with $\int_0^1 u(y) dy = \emptyset$, and where

v = v(v) solves

+v'' = u for 0 < y < 1, v'(0) = 0 = v'(1).

Step 1: Γ-convergence

Consider (NLIP) posed on a thin rectangle $\Omega_{\varepsilon} := (0, \varepsilon) \times (0, 1)$:

min
$$J_{\Omega_{\varepsilon}}(u) := \operatorname{Per}_{\Omega_{\varepsilon}}(\{x : u(x) = 1\}) + \gamma \int_{\Omega_{\varepsilon}} |\nabla v|^2 dx$$

under the constraint $\int_{\Omega_c} u = 0$.

After rescaling onto the (fixed) unit square Ω_1 and dividing by ε one checks that $J_{\Omega_{\varepsilon}}$ Γ -converges as $\varepsilon \to 0$ to the one-dimensional energy

$$J^{1d}(u) := \# \text{ of jumps } + \gamma \int_0^{\infty} v_y^2 \, dy$$

for $u \in BV((0,1); \{\pm 1\})$, with $\int_0^1 u(y) dy = 0$, and where v = v(y) solves

$$-v'' = u$$
 for $0 < y < 1$, $v'(0) = 0 = v'(1)$.

"Perimeter" in 1d just counts number of jumps, located say at $\{y_j\}_{j=1}^k$.

Also criticality condition $\kappa + 4\gamma v = constant$ reduces to simply

 $v(y_j) = constant$ (since curvature = 0)

Easily check that only critical points are a_k given by

where $y_i := \frac{2j+1}{2k}$ for j = 1, 2, ..., k and the derivative of the corresponding v_k is a 'sawtooth function."

"Perimeter" in 1d just counts number of jumps, located say at $\{y_j\}_{j=1}^k$.

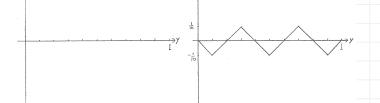
Also criticality condition $\kappa + 4\gamma v = constant$ reduces to simply

 $v(y_i) = constant$ (since curvature = 0)

Easily check that only critical points are u_k given by

 $u_k(y) := \begin{cases} 1 & \text{for } 0 < y < y_1, \ y_2 < y < y_3, \dots, \ y_{k-1} < y < y_k \\ -1 & \text{for } y_1 < y < y_2. \ y_3 < y < y_4, \dots, \ y_k < y < 1 \end{cases}$

where $y_j := \frac{2j+1}{2k}$ for j = 1, 2, ..., k and the derivative of the corresponding v_k is a "sawtooth function." (For simplicity only, fix m = 0.)



The 5-jump critical point u_5 with m = 0 and the derivative of the corresponding v_5 solving

$$-v_5'' = u_5$$
 for $0 < y < 1$, $v_5'(0) = 0 = v_5'(1)$.

Easy to compute that

$$J^{1d}(u_k) = k + \frac{\gamma}{12k^2}$$

so given any $\gamma,$ one can optimize over k to find global minimizer is $u_{k(\gamma)},$ with

$k(\gamma) \sim \gamma^{1/3}$ for $\gamma \gg 1$

Easy to compute that

$$J^{1d}(u_k) = k + \frac{\gamma}{12k^2}$$

so given any $\gamma,$ one can optimize over k to find global minimizer is $u_{k(\gamma)},$ with

$$k(\gamma)\sim \gamma^{1/3}$$
 for $\gamma\gg 1.$

Step 3: Proof of global minimality

Fix $a < \pi \sqrt{\frac{k(\gamma)}{2\gamma}}$. Let u_{ε} be a global minimizer in Ω_{ε} and let $\tilde{u}_{\varepsilon}(x, y) := u_{\varepsilon}(\frac{\varepsilon}{a}x, y)$

Step 3: Proof of global minimality

Fix $a < \pi \sqrt{\frac{k(\gamma)}{2\gamma}}$. Let $u_{arepsilon}$ be a global minimizer in $\Omega_{arepsilon}$ and let

 $\tilde{u}_{\varepsilon}(x,y) := u_{\varepsilon}(\frac{\varepsilon}{a}x,y)$

By Γ-convergence

 $\widetilde{u}_{arepsilon} o u_{k(\gamma)}$ in $L^1(\Omega_a)$

Step 3: Proof of global minimality

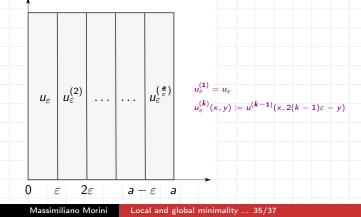
Fix $a < \pi \sqrt{\frac{k(\gamma)}{2\gamma}}$. Let u_{ε} be a global minimizer in Ω_{ε} and let

$$\tilde{u}_{\varepsilon}(x,y) := u_{\varepsilon}(\frac{\varepsilon}{a}x,y)$$

By Γ-convergence

 $ilde{u}_{arepsilon} o u_{k(\gamma)} \quad ext{ in } L^1(\Omega_a)$

Let u_{ε}^{r} the function in $BV(\Omega_{a})$ obtained by $\frac{a}{\varepsilon} - 1$ reflections of u_{ε} .



Note $\|u_{\varepsilon}^{r} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} = \|\tilde{u}_{\varepsilon} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} \to 0$

Note

$$\|u_{\varepsilon}^{r} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} = \|\tilde{u}_{\varepsilon} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} \to 0$$

Thus for ε small enough

$$J_{\Omega_{\boldsymbol{a}}}(u_{\varepsilon}^{r}) \geq J_{\Omega_{\boldsymbol{a}}}(u_{k(\gamma)}) + C \left\| u_{k(\gamma)} - u_{\varepsilon}^{r} \right\|_{L^{1}(\Omega_{\boldsymbol{a}})}^{2}$$

Note

$$\|u_{\varepsilon}^{r} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} = \|\tilde{u}_{\varepsilon} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} \to 0$$

Thus for ε small enough

$$J_{\Omega_{\boldsymbol{a}}}(u_{\varepsilon}^{r}) \geq J_{\Omega_{\boldsymbol{a}}}(u_{k(\gamma)}) + C \left\| u_{k(\gamma)} - u_{\varepsilon}^{r} \right\|_{L^{1}(\Omega_{\boldsymbol{a}})}^{2}$$

But $J_{\Omega_a}(u_{\varepsilon}^r) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{\varepsilon})$,

Note

$$\|u_{\varepsilon}^{r} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} = \|\tilde{u}_{\varepsilon} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} \to 0$$

Thus for ε small enough

$$J_{\Omega_{a}}(u_{\varepsilon}^{r}) \geq J_{\Omega_{a}}(u_{k(\gamma)}) + C \left\| u_{k(\gamma)} - u_{\varepsilon}^{r} \right\|_{L^{1}(\Omega_{a})}^{2}$$

But $J_{\Omega_a}(u_{\varepsilon}^r) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{\varepsilon}), \ J_{\Omega_a}(u_{k(\gamma)}) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{k(\gamma)}),$

Note

$$\|u_{\varepsilon}^{r}-u_{k(\gamma)}\|_{L^{1}(\Omega_{a})}=\|\tilde{u}_{\varepsilon}-u_{k(\gamma)}\|_{L^{1}(\Omega_{a})}\to 0$$

Thus for ε small enough

$$J_{\Omega_{a}}(u_{\varepsilon}^{r}) \geq J_{\Omega_{a}}(u_{k(\gamma)}) + C \left\| u_{k(\gamma)} - u_{\varepsilon}^{r} \right\|_{L^{1}(\Omega_{a})}^{2}$$

But
$$J_{\Omega_a}(u_{\varepsilon}^r) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{\varepsilon}), \ J_{\Omega_a}(u_{k(\gamma)}) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{k(\gamma)}), \ \text{and}$$

 $\|u_{k(\gamma)} - u_{\varepsilon}^r\|_{L^1(\Omega_a)}^2 = \frac{a^2}{\varepsilon^2} \|u_{k(\gamma)} - u_{\varepsilon}\|_{L^1(\Omega_{\varepsilon})}^2$

Note

$$\|u_{\varepsilon}^{r} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} = \|\tilde{u}_{\varepsilon} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} \to 0$$

Thus for ε small enough

$$J_{\Omega_{a}}(u_{\varepsilon}^{r}) \geq J_{\Omega_{a}}(u_{k(\gamma)}) + C \left\| u_{k(\gamma)} - u_{\varepsilon}^{r} \right\|_{L^{1}(\Omega_{a})}^{2}$$

But
$$J_{\Omega_a}(u_{\varepsilon}^r) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{\varepsilon}), \ J_{\Omega_a}(u_{k(\gamma)}) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{k(\gamma)}), \text{ and}$$
$$\|u_{k(\gamma)} - u_{\varepsilon}^r\|_{L^1(\Omega_a)}^2 = \frac{a^2}{\varepsilon^2} \|u_{k(\gamma)} - u_{\varepsilon}\|_{L^1(\Omega_{\varepsilon})}^2$$

Thus, for ε small enough

$$J_{\Omega_arepsilon}(u_arepsilon) \geq J_{\Omega_arepsilon}(u_{k(\gamma)}) + Crac{a}{arepsilon} \left\| u_{k(\gamma)} - u_arepsilon
ight\|_{L^1(\Omega_arepsilon)}^2$$

Note

$$\|u_{\varepsilon}^{r} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} = \|\tilde{u}_{\varepsilon} - u_{k(\gamma)}\|_{L^{1}(\Omega_{a})} \to 0$$

Thus for ε small enough

$$J_{\Omega_{a}}(u_{\varepsilon}^{r}) \geq J_{\Omega_{a}}(u_{k(\gamma)}) + C \left\| u_{k(\gamma)} - u_{\varepsilon}^{r} \right\|_{L^{1}(\Omega_{a})}^{2}$$

But
$$J_{\Omega_a}(u_{\varepsilon}^r) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{\varepsilon}), \ J_{\Omega_a}(u_{k(\gamma)}) = \frac{a}{\varepsilon} J_{\Omega_{\varepsilon}}(u_{k(\gamma)}),$$
 and
 $\|u_{k(\gamma)} - u_{\varepsilon}^r\|_{L^1(\Omega_a)}^2 = \frac{a^2}{\varepsilon^2} \|u_{k(\gamma)} - u_{\varepsilon}\|_{L^1(\Omega_{\varepsilon})}^2$

Thus, for ε small enough

$$J_{\Omega_{\varepsilon}}(u_{\varepsilon}) \geq J_{\Omega_{\varepsilon}}(u_{k(\gamma)}) + C rac{a}{arepsilon} \left\| u_{k(\gamma)} - u_{arepsilon}
ight\|_{L^{1}(\Omega_{arepsilon})}^{2}$$
 \Downarrow

$$u_{\varepsilon} = u_{k(\gamma)}$$
 for ε small

Thanks for your attention!!!!!