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Diblock copolymers

Polymer = molecular chain made up of several molecules with
high chemical affinity

Diblock Copolymer = complex macromolecule made up of two
different molecular chains chemically bonded

· · · -A-A-A-A-A-A-B-B-B-B-A-A-A-B-B-B-B-· · ·

Chemical incompatibility between the non-affine subchains
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Diblock copolymers

· · · -A-A-A-A-A-A-A-A-B-B-B-B-B-B-B-· · ·

Chemical incompatibility between the phases =⇒ tendency to
macroscopic phase separation

Chemical bonds between the non-affine subchains =⇒ long range
effects, pattern formation

different volume fractions =⇒ different nanostructure
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Phase boundaries for diblocks

Picture from an article by Choksi, Peletier and Willams 2009
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Tendency towards periodic arrays of interfaces–
observed experimentally and numerically.

Picture from Edwin Thomas’ talk at MSRI 1999
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The Ohta-Kawasaki functional

Denote by u : Ω→ IR the function describing the density:{
u(x) ' 1 on phase A
u(x) ' −1 on phase B

m =
1
|Ω|

∫
Ω
u dx fixed

Eε(u) = ε

∫
Ω
|∇u|2dx +

1
ε

∫
Ω
(1−u2)2dx + γNL(u)

where
NL(u) :=

∫
Ω

∫
Ω
GΩ(x , y)u(x)u(y) dxdy .

Here GΩ is the Green’s function defined by
−∆yGΩ(x , ·) = δx − 1

|Ω| in Ω,∫
Ω GΩ(x , y)dy = 0,
PBC or NBC

and Ω = TN (PBC) or Ω is bounded and (sufficiently) smooth
(NBC)
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The Ohta-Kawasaki functional: the potential v

Setting

v(x) :=

∫
Ω
GΩ(x , y)u(y) dy ,

we have that v solves
−∆v = u −m in Ω,∫

Ω v dx = 0,
PBC or NBC

where m is the prescribed average of u

m := −
∫

Ω
u dx .
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The Ohta-Kawasaki functional: the nonlocal term rivisited

Note that

NL(u) =

∫
Ω

∫
Ω
GΩ(x , y)u(y)u(x) dydx =

∫
Ω
v(x)u(x) dx

=

∫
Ω
v(x) (u(x)−m)︸ ︷︷ ︸

=−∆v

dx

=

∫
Ω
|∇v |2 dx

Remark: We have that

‖∇v‖L2(Ω) = sup
{∫

Ω
(u−m)ϕ dx : ϕ ∈ H1(Ω) , ‖∇ϕ‖L2(Ω) = 1

}
Hence NL may be regarded as the square of the homogeneous
H−1-norm of u −m.
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The nonlocal isoperimetric problem–the ε→ 0 limit of O-K

The nonlocal isoperimetric problem (NLIP) is given by

minimize J(u) := PerΩ ({x : u(x) = 1}) + γ

∫
Ω
|∇v |2 dx , (NLIP)

over all u ∈ BV (Ω, {±1}) satisfying

−
∫

Ω
u dx = m

and v satisfying 
−∆v = u −m in Ω,∫

Ω v dx = 0,
PBC or NBC
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NLIP– A ‘fight’ of low surface area versus high oscillation

J(u) :=PerΩ({x : u(x) = 1})︸ ︷︷ ︸
attractive

short-range
interactions

+γ

∫
Ω

∫
Ω
GΩ(x , y)u(x)u(y) dxdy︸ ︷︷ ︸

repulsive
long-range
interactions

GΩ(x , y) ∼ 1
|x−y |N−2

NLIP is interesting as a canonical nonlocal perturbation of the classical isoperimetric problem; and as a

model for energy-driven pattern formation.
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The Nonlocal Isoperimetric Problem (NLIP)

We rewrite the functional in a more geometric fashion:

J(E ) = PerΩ(E ) + γ

∫
Ω
|∇vE |2 dx

where 
−∆vE = uE −−

∫
uE dx in Ω∫

Ω vE = 0
PBC or NBC

and uE := χE − χE c .

min {J(E ) : E ⊂ Ω , |E | = m} (NLIP)
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Mathematical challenges: global minimizers

Structure of global minimizers: are the global minimizers of Eε and
of J (almost) periodic?

True in one dimension (Müller, 1993);

Partial results in higher dimensions (Alberti-Choksi-Otto, 2009; Spadaro, 2009)
 equidistribution of energy

Droplet minimizers: Choksi&Peletier, Muratov, Goldman Muratov&Serfaty,
Cicalese&Spadaro

There are VERY FEW examples of explicit global mininimizers!
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Mathematical challenges: local minimizers

Structure of local minimizers: Can we exhibit local minimizers of Eε
and of J that look like lamellae, droplets, gyroids, cylinders....? Can
we provide sufficiency conditions for local minimality?

Choksi&Sternberg, 2007: computation of ∂2J at critical points

Ren&Wei, 2002–2008: construction of stable critical configurations with some
of the interesting patterns shown before for the energy J.
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Link between local minimizers of Eε and J

The link is provided via Γ-convergence

Theorem (Kohn-Sternberg)

Let (X , d) be a metric space and let (Fk)k be a sequence of lower
semicontinuous and equi-coercive functionals from X to

R ∪ {+∞}. Assume that Fk
Γ(d)−→ F and let x be an isolated local

minimizer of F . Then there exist xk → x such that xk is a local
minimizers of Fk for k large enough.

Plan:
show that ∂2J > 0⇒ a critical point is an isolated L1-local
minimizer;
thus, the known stable critical configurations are isolated
L1-local minimizers;
by Kohn&Sternberg theory such configurations can be lifted to
locally minimizing configurations for the diffuse energy Eε.
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locally minimizing configurations for the diffuse energy Eε.
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Critical points

Recall

J(E ) = PerΩ(E ) + γ

∫
Ω
|∇vE |2 dx

The Euler-Lagrange equation for C 2 minimizers of J(E ) with a
volume constraint

(E .L.) H∂E (x) + 4γvE (x) = λ on ∂E

where H∂E = sum of principal curvatures
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Local Minimizers

Distance between (equivalence classes) of sets:

• NBC case:
d(E ,F ) := |E4F | .

• PBC case:
d(E ,F ) = min

τ
|E4(F + τ)|

Natural definition: E ⊂ Ω, is a (strict) local minimizer if ∃δ > 0
s.t.

J(F ) > J(E )

whenever F ⊂ Ω with 0 < d(E ,F ) < δ and |F | = |E |
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Regularity of local minimizers

Easy fact: ∣∣∣∫
Ω
|∇vE |2 dx −

∫
Ω
|∇vF |2 dx

∣∣∣≤ c |E∆F |

Another fact:

E is a minimizer with volume constraint ←→

E is a minimizer of J(F ) + Λ
∣∣|F | − |E |∣∣ for some large Λ

Theorem (Sternberg-Topaloglu (2011))

If E ⊂ Tn is a local minimizer of J, then ∂E \ Σ is C 3,α, for any
α<1, and Σ is a closed set such that dimH(Σ) ≤ n − 8
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Second variation

Let E ∈ C 2 be critical and fix a C 2 vector field X : Ω 7→ Ω. Then,
let us consider

Φ : Ω× (−1, 1) 7→ Ω the associated flow

∂Φ

∂t
= X (Φ), Φ(x , 0) = x

and set Et := Φ(·, t)(E ),

d2

dt2
J(Et)∣∣

t=0

Assume that
|Et | = |E |.
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Computation of the second variation

Theorem (Choksi-Sternberg 2007)

For, say Ω = Tn and f := X · νE , one can compute second variation

∂2J(f ) :=

∫
∂E

(
|∇∂E f |2 − |B|2f 2) dHn−1︸ ︷︷ ︸

standard second variation of area

+

8γ
∫
∂E

∫
∂E

G (x , y) f (x) f (y) dHn−1
x dHn−1

y︸ ︷︷ ︸
nonlocal contribution

+ 4γ
∫
∂E
∇v · ν f 2 dHn−1︸ ︷︷ ︸

nonlocal contribution

.

Here, G (x , y)=Green’s function for (–) Laplacian.
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Consequences of the translation invariance

Since J(E ) = J(E + tτ)

=⇒ ∂2J(E )[τ · νE (x)] = 0 for all τ

Let us define T = span{ν1, . . . νn} and

T⊥ = {f ∈ H1(∂E ) :
∫
f =

∫
f νi = 0}

Strict stability then means

∂2J(E )[f ] > 0 ∀f ∈ T⊥ \ {0}
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L1 local minimality via second variation

Theorem (Acerbi-Fusco-M., Comm. Math. Phys 2013)

Let E ⊂ Tn be a regular critical set of J such that

∂2J(E )[f ] > 0 ∀f ∈ T⊥(∂E ) \ {0} .

There exists δ > 0 s.t. for all F ⊂ Tn with |F | = |E | and
d(E ,F ) < δ

J(F ) ≥ J(E ) + C0d(E ,F )2 .

• Extension to NBC: Julin-Pisante, 2013
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Consequences: the Ohta-Kawasaki energy

Proposition

If E is a regular critical point of J with ∂2J(E ) > 0, then there
exists a family {uε}ε<ε0 of strict local minimizers of the diffused
energy Eε with

∫
Tn uε dx =

∫
Tn uE dx, s.t.

uε → uE in L1(Tn)

as ε→ 0.
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Case γ = 0: the periodic isoperimetric problem

Corollary
Let E ⊂ Tn be smooth open set with ∂E a constant mean
curvature surface. If∫

∂E

(
|∇∂E f |2 − |B∂E |2f 2) dHn−1 > 0 ∀ f ∈ T⊥(∂E ) \ {0} ,

then there exist δ, C > 0 s.t. for F ⊂ Tn, with |F | = |E | and
d(E ,F ) < δ

PTn(F ) ≥ PTn(E ) + C [d(E ,F )]2 .

• B.White, 1994: local minimality w.r.t. L∞ perturbations

• Morgan-Ros, 2010: local minimality w.r.t. L1 perturbations but
for n ≤ 7 and without quantitative estimate
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Application: Global minimality of the single lamella

(P) Min
{
Jγ(E ) = PTn(E ) + γ

∫
Tn
|∇vE |2 dx , |E | = d

}
For 0 < d < 1 set

L = Tn−1 × [0, d ]
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Global minimality of the single lamella

Theorem (Acerbi-Fusco-M.)

Assume that L is the unique, up to translations and relabelling of
coordinates, global minimizer of the periodic isoperimetric problem.
Then L is also the unique global minimizer of (P), provided γ is
sufficiently small.

Sketch of the proof: Let Eγ be a minimizer of Jγ .

Step 1: As γ → 0 we have Eγ → L in L1.

Step 2: For γ small L is strictly stable for Jγ .

Step 4: For γ small L is an L1 isolated local minimizer, uniformly
in γ. Thus Eγ = L for γ small.
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Global minimality of the single lamella

Let n = 2. Theorem + Howards-Hutchings-Morgan, 1999

⇓

If
1
π
< d < 1− 1

π
, L is the unique global minimizer of (P) in T2

provided γ is small (see also Sternberg-Topaloglu, 2011)

Let n = 3. Theorem + a result of Hadwiger, 1972

⇓

There exist ε0, γ0 > 0 s.t. if
1
2
− ε0 < d <

1
2

+ ε0, 0 ≤ γ < γ0

L is the unique global minimizer of (P) in T3
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Critical 2d k-lamellar patterns

We consider only the case m = 0

0 a
y1

y2

...

yk−1

yk
1

Ωa := (0, a)× (0, 1)

• Criticality ⇒ yj = 2j−1
2k j = 1, . . . , k
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Local minimality of 2d lamellar patterns

Theorem (M.-Sternberg, 2013)

For any positive integer k,

if

a < π
√

k
2γ ,

then the k-lamellar critical point uk is an isolated L1-local
minimizer in Ωa := (0, a)× (0, 1); i.e., there exist δ and C > 0 such
that

J(w) ≥ J(uk) + C ‖uk − w‖2L1(Ωa)

provided ‖uk − w‖L1(Ωa) < δ and
∫

Ωa
w =

∫
Ωa

uk .
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Local minimality of 2d lamellar patterns: ingredients

• Spectral analysis: a < π
√

k
2γ implies that

∂2J(uk)[f ] > 0 for all f ∈ H1(Γ) \ 0 with
∫

Γ

f dH1 = 0 .

• Extension of the Acerbi-Fusco-M.

∂2J > 0⇒ L1-local minimality

result to the case of rectangular domain with NBC

• Remark: Morphological instability may only come from wriggling and
corrugations:
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• Remark: Morphological instability may only come from wriggling and
corrugations:
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Cascade of lamellar global minimizers in thin rectangles

Theorem (M.-Sternberg, 2013)

Fix any γ > 0. Then for k(γ) minimizing the 1d energy

J1d(uk) = k +
γ

12k2 ,

uk(γ) is the unique global minimizer of J in (0, ε)× (0, 1) for ε
sufficiently small.
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Step 1: Γ-convergence

Consider (NLIP) posed on a thin rectangle Ωε := (0, ε)× (0, 1):

min JΩε(u) := PerΩε ({x : u(x) = 1}) + γ

∫
Ωε

|∇v |2 dx ,

under the constraint
∫

Ωε
u = 0.

After rescaling onto the (fixed) unit square Ω1 and dividing by ε
one checks that JΩε Γ-converges as ε→ 0 to the one-dimensional
energy

J1d (u) := # of jumps + γ

∫ 1

0
v2
y dy

for u ∈ BV ((0, 1); {±1}), with
∫ 1
0 u(y) dy = 0, and where

v = v(y) solves

−v ′′ = u for 0 < y < 1, v ′(0) = 0 = v ′(1).

Massimiliano Morini Local and global minimality ... 31/37



Step 1: Γ-convergence

Consider (NLIP) posed on a thin rectangle Ωε := (0, ε)× (0, 1):

min JΩε(u) := PerΩε ({x : u(x) = 1}) + γ

∫
Ωε

|∇v |2 dx ,

under the constraint
∫

Ωε
u = 0.

After rescaling onto the (fixed) unit square Ω1 and dividing by ε
one checks that JΩε Γ-converges as ε→ 0 to the one-dimensional
energy

J1d (u) := # of jumps + γ

∫ 1

0
v2
y dy

for u ∈ BV ((0, 1); {±1}), with
∫ 1
0 u(y) dy = 0, and where

v = v(y) solves

−v ′′ = u for 0 < y < 1, v ′(0) = 0 = v ′(1).

Massimiliano Morini Local and global minimality ... 31/37



Step 2: Explicit calculation of 1d minimizers

“Perimeter" in 1d just counts number of jumps, located say at
{yj}kj=1.
Also criticality condition κ+ 4γv = constant reduces to simply

v(yj) = constant (since curvature = 0)

Easily check that only critical points are uk given by

uk(y) :=

{
1 for 0 < y < y1, y2 < y < y3, . . . , yk−1 < y < yk
−1 for y1 < y < y2. y3 < y < y4, . . . , yk < y < 1

where yj := 2j−1
2k for j = 1, 2, . . . , k and the derivative of the

corresponding vk is a “sawtooth function."
(For simplicity only, fix m = 0.)
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Step 2: Explicit calculation of 1d minimizers

The 5-jump critical point u5 with m = 0 and the derivative of the
corresponding v5 solving

−v ′′5 = u5 for 0 < y < 1, v ′5(0) = 0 = v ′5(1).
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Step 2: Explicit calculation of 1d minimizers

Easy to compute that

J1d (uk) = k +
γ

12k2

so given any γ, one can optimize over k to find global minimizer is
uk(γ), with

k(γ) ∼ γ1/3 for γ � 1.
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Step 3: Proof of global minimality

Fix a < π
√

k(γ)
2γ . Let uε be a global minimizer in Ωε and let

ũε(x , y) := uε( εax , y)

By Γ-convergence
ũε → uk(γ) in L1(Ωa)

Let ur
ε the function in BV (Ωa) obtained by a

ε − 1 reflections of uε.

0

uε

ε

u(2)
ε

2ε

. . . . . .

a− ε a

u( a
ε )
ε

u(k)
ε (x, y) := u(k−1)(x, 2(k − 1)ε − y)

u(1)
ε = uε
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Step 3: Proof of global minimality: conclusion

Note
‖ur
ε − uk(γ)‖L1(Ωa) = ‖ũε − uk(γ)‖L1(Ωa) → 0

Thus for ε small enough

JΩa(ur
ε) ≥ JΩa(uk(γ)) + C

∥∥uk(γ) − ur
ε

∥∥2
L1(Ωa)

But JΩa(ur
ε) = a

εJΩε(uε), JΩa(uk(γ)) = a
εJΩε(uk(γ)), and∥∥uk(γ) − ur

ε

∥∥2
L1(Ωa)

= a2

ε2

∥∥uk(γ) − uε
∥∥2

L1(Ωε)

Thus, for ε small enough

JΩε(uε) ≥ JΩε(uk(γ)) + C
a
ε

∥∥uk(γ) − uε
∥∥2

L1(Ωε)

⇓
uε = uk(γ) for ε small
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ε − uk(γ)‖L1(Ωa) = ‖ũε − uk(γ)‖L1(Ωa) → 0

Thus for ε small enough

JΩa(ur
ε) ≥ JΩa(uk(γ)) + C

∥∥uk(γ) − ur
ε

∥∥2
L1(Ωa)

But JΩa(ur
ε) = a

εJΩε(uε), JΩa(uk(γ)) = a
εJΩε(uk(γ)),

and∥∥uk(γ) − ur
ε

∥∥2
L1(Ωa)

= a2

ε2

∥∥uk(γ) − uε
∥∥2

L1(Ωε)

Thus, for ε small enough

JΩε(uε) ≥ JΩε(uk(γ)) + C
a
ε

∥∥uk(γ) − uε
∥∥2

L1(Ωε)

⇓
uε = uk(γ) for ε small

Massimiliano Morini Local and global minimality ... 36/37



Step 3: Proof of global minimality: conclusion

Note
‖ur
ε − uk(γ)‖L1(Ωa) = ‖ũε − uk(γ)‖L1(Ωa) → 0
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Thanks for your attention!!!!!
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