Asymptotic spectral analysis in nanowires with axial heterogeneities

In collaboration with : Rita Ferreira & Andrey Piatnitsky We consider the stationary Schrödinger equation with zero potential in a

thin bounded tubular domain of thickness  $\delta$  :  $\Omega_{\delta} \subset \mathbb{R}^3$ 

To find the spatial wave function  $\psi_{\delta}$  and the energy levels *E* reduces to solve :

$$\begin{cases} -\frac{\hbar^2}{2m} \Delta \psi_{\delta} = E \ \psi_{\delta}, & \text{in } \Omega_{\delta}, \\ \psi_{\delta} = 0 & \text{on } \partial \Omega_{\delta}, \end{cases}$$

or, in a standard mathematical notation, forgetting the constants,

$$\begin{cases} -\Delta v_{\delta} = \lambda^{\delta} v_{\delta}, & \text{in } \Omega_{\delta}, \\ v_{\delta} = 0 & \text{on } \partial \Omega_{\delta}. \end{cases}$$

where  $0 < \lambda_1^\delta \leq \lambda_2^\delta \leq \cdots \rightarrow +\infty$ 

## Motivation

If the thin tube is non-homogeneous, the particle behaves as if its mass m(x) varies and we are lead to consider the stationary Schrödinger effective-mass equation, with zero potential :

$$\begin{cases} -\frac{\hbar^2}{2} \operatorname{div} \left( \frac{1}{m(x)} \nabla \psi_{\delta}(x) \right) = E \, \psi_{\delta}(x), & x \in \Omega_{\delta}, \\ \psi_{\delta}(x) = 0 & x \in \partial \Omega_{\delta}, \end{cases}$$

or, following a more general notation  $\left(A(x) = \frac{\hbar^2}{2 m(x)} \mathbb{I}\right)$ 

$$\begin{cases} -\operatorname{div} \ (A\nabla v_{\delta}) = \lambda^{\delta} \, v_{\delta}, & \text{in } \Omega_{\delta}, \\ v_{\delta} = 0 & \text{on } \partial \Omega_{\delta}. \end{cases}$$

where again  $0 < \lambda_1^{\delta} \leq \lambda_2^{\delta} \leq \cdots \rightarrow +\infty$ 

• If the properties of the tube vary with high frequency, having  $\varepsilon$ -periodic heterogeneities, the energy levels will depend strongly on  $\delta$  (or  $\varepsilon$ ) and on the ratio  $\delta/\varepsilon$ 

## Problem



$$\begin{cases} -\operatorname{div}\left(A_{\varepsilon}\nabla v_{\varepsilon}^{\delta}\right) = \lambda_{\varepsilon}^{\delta} v_{\varepsilon}^{\delta}, & \text{in } \Omega_{\delta}, \\ v_{\varepsilon}^{\delta} \in H_{0}^{1}(\Omega_{\delta}) \end{cases}$$

$$\begin{aligned} 0 < \lambda_{\varepsilon}^{\delta,0} \leqslant \lambda_{\varepsilon}^{\delta,1} \leqslant \cdots \leqslant \lambda_{\varepsilon}^{\delta,i} \leqslant \lambda_{\varepsilon}^{\delta,i+1} \leqslant \cdots \\ \delta \to 0 \ \Rightarrow \ \lambda_{\varepsilon}^{\delta,i} \to +\infty, \ \forall i \end{aligned}$$

- We analyse  $\varepsilon$  periodic axial heterogeneities :  $A_{\varepsilon}(x) = A(x_3/\varepsilon), \quad A \text{ is } [0,1]$  - periodic in  $\mathbb{R}$
- We study the behavior of spectrum as  $\varepsilon \to 0$  and  $\delta \to 0$
- We look for the 1D limit problem

# Notations and hypothesis

 $\delta, \varepsilon > 0$  small parameters

$$\Omega_{\delta} := \delta \omega \times I, \quad \omega \subset \mathbb{R}^2, \quad I := (0, L)$$

 $x^{\delta} = (\delta \bar{x}, x_3) \in \Omega_{\delta}, \quad \bar{x} = (x_1, x_2) \in \omega, \quad x_3 \in I, \quad Y := [0, 1]$ 

$$u' := \frac{\partial u}{\partial x_3}, \qquad \bar{\Delta}u := \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}$$

 $A \in [L^{\infty}(\mathbb{R})]^{3 \times 3}$ , diagonal, *Y*-periodic,

 $A(y) = \operatorname{diag} (b(y), b(y), a(y))$  $\eta \le a(y), b(y) \le \zeta,$ 

for a.e.  $y \in Y$  and for some  $0 < \eta < \zeta$ 

$$A_{\varepsilon}(x_3) = \operatorname{diag} \left( b_{\varepsilon}(x_3), b_{\varepsilon}(x_3), a_{\varepsilon}(x_3) \right)$$
$$a_{\varepsilon}(x_3) = a \left( \frac{x_3}{\varepsilon} \right), \quad b_{\varepsilon}(x_3) = b \left( \frac{x_3}{\varepsilon} \right)$$

#### **Rescaled problem**

Usual procedure : change of variables, setting the problem in the fixed domain  $\omega \times I$  :

$$x^{\delta} = (\bar{x}^{\delta}, x_{3}) \in \Omega_{\delta} = \delta\omega \times I \mapsto x = \left(\frac{\bar{x}^{\delta}}{\delta}, x_{3}\right) \in \omega \times I$$
$$\tilde{v}_{\varepsilon}^{\delta}(x^{\delta}) = v_{\varepsilon}^{\delta}(x)$$

obtaining the rescaled problem :

$$\begin{cases} -\left(a_{\varepsilon}(v_{\varepsilon}^{\delta})'\right)' - \frac{b_{\varepsilon}}{\delta^{2}}\bar{\Delta}v_{\varepsilon}^{\delta} = \lambda_{\varepsilon}^{\delta}v_{\varepsilon}^{\delta}, \quad \text{a.e. in } \omega \times I, \\ v_{\varepsilon}^{\delta} \in H_{0}^{1}(\omega \times I) \end{cases}$$
  
3 cases :  $\delta = \varepsilon^{\tau} \quad \left(\delta/\varepsilon = \varepsilon^{(\tau-1)}\right)$   
 $\varepsilon \approx \delta : \quad \tau = 1$   
 $\varepsilon \ll \delta : \quad \tau < 1$   
 $\varepsilon \gg \delta : \quad \tau > 1$ 

3 cases :  $\varepsilon \approx \delta$  :  $\tau = 1$ ;  $\varepsilon \ll \delta$  :  $\tau < 1$ ;  $\varepsilon \gg \delta$  :  $\tau > 1$ 

We introduce the 1<sup>st</sup> normalized eigenpair  $(\mu_{\varepsilon,0}^{\tau}, \phi_{\varepsilon,0}^{\tau})$  of the 1D cell problem

$$\begin{cases} -\varepsilon^{2(\tau-1)} \left( a(\phi_{\varepsilon}^{\tau})' \right)' + b \rho_0 \phi_{\varepsilon}^{\tau} = \mu_{\varepsilon}^{\tau} \phi_{\varepsilon}^{\tau}, \text{ in } Y, \\ \phi_{\varepsilon}^{\tau} \in H^1_{\#}(Y), \end{cases}$$

where  $\rho_0$  is the 1<sup>st</sup> eigenvalue of the following 2D problem in the cross section  $\omega$ :

$$\begin{cases} -\Delta\theta = \rho \, \theta, \text{ in } \omega \\ \theta \in H^1_0(\omega), \end{cases}$$

 $\mu_{\varepsilon,0}^{\tau}$  and  $\rho_0$  are real, positive and simple, and the associated normalized eigenfunctions  $\phi_{\varepsilon,0}^{\tau}$  and  $\theta_0$  may be chosen to be a strictly positive.  $\phi_{\varepsilon,0}^{\tau}$  is absolutely continuous.

# Auxiliar results

#### Proposition 1

For each fixed  $\tau, \varepsilon$ , we reduce the 3D eigenvalue pb to a family of 1D eigenvalue pbs, parametrized by the 2D eigenvalues in the cross section  $\omega$ .

For *n* fixed, let  $\{\lambda_k^{(n)}\}_{k\geq 0}$  be the *k*-sequence of eigenvalues for the 1D spectral pb :

$$\begin{cases} -\left(a\varphi'\right)' + b\,\rho_n\varphi = \lambda\,\varphi, \text{ a.e. in } I,\\ \varphi \in H^1_0(I), \end{cases}$$

where  $\{\rho_n\}$  is the sequence of eigenvalues of the 2D cross section pb.

Then,  $\{\lambda_k^{(n)}\}_{k,n\geq 0}$  coincides with the sequence  $\{\tilde{\lambda}_m\}$  of eigenvalues, repeated according to their multiplicity, of the 3D pb

$$\begin{cases} -\left(av'\right)' - b\bar{\Delta}v = \lambda v, \text{ a.e. in } \omega \times I, \\ v \in H_0^1(\omega \times I). \end{cases}$$

The corresponding modes  $\{v_k^{(n)}\}_{k,n\geq 0}$  are products  $\theta_n(\bar{x}) \varphi_k^{(n)}(x_3)$ .

## Auxiliar results

#### **Proposition 2**

Fix  $\tau, \varepsilon > 0$ . Let  $(\mu_{\varepsilon,0}^{\tau}, \phi_{\varepsilon,0}^{\tau})$  be the 1<sup>st</sup> normalized eigenpair of the 1D cell pb. Relate v and u by the formula

$$v(x_3) = \phi_{\varepsilon,0}^{\tau} \left(\frac{x_3}{\varepsilon}\right) u(x_3), \text{ a.e. } x_3 \in I.$$

Then

• 
$$v \in H_0^1(I) \iff u \in H_0^1(I)$$
  
•  $\int_I \left( a_{\varepsilon} |v'|^2 + \frac{b_{\varepsilon}}{\varepsilon^{2\tau}} \rho_0 |v|^2 - \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} |v|^2 \right) dx_3 = \int_I \left( a_{\varepsilon} \left[ \phi_{\varepsilon,0}^{\tau} \left( \frac{x_3}{\varepsilon} \right) \right]^2 |u'|^2 \right) dx_3$   
•  $\lambda_{\varepsilon,k} = \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} + \nu_{\varepsilon,k}^{\tau}$  ( $\nu_{\varepsilon,k}^{\tau}$  are eigenvalues of right hand side pb)

**Remark** : The crucial point is to analyse the behavior of the 1<sup>st</sup> eigenpair  $(\mu_{\varepsilon,0}^{\tau}, \phi_{\varepsilon,0}\tau)$  of the cell pb, when  $\tau \neq 1$ 

## Auxiliar results

Proposition 3 (Vishik - Lyusternik)

Let  $L: H \to H$  be a linear compact self-adjoint operator in a Hilbert space H, and suppose that  $\lambda > 0$  and  $f \in H$  are such that

$$\|Lf-\lambda f\|_{H}\leq \gamma.$$

Then

• There exists an eigenvalue  $\overline{\lambda}$  of *L* :

$$|\bar{\lambda} - \lambda| \le \gamma \|f\|_H^{-1}$$

• For  $d > \gamma ||f||_{H}^{-1}$ , there exists  $a\overline{f}$ ,  $||\overline{f}||_{H} = ||f||_{H}$ , linear combination of eigenvectors associated with the eigenvalues lying in the interval  $[\lambda - d, \lambda + d]$ , satisfying

$$\|\bar{f} - f\|_H \le 2 d^{-1} \gamma$$

- $\delta = \varepsilon \ (\tau = 1)$
- $(\mu_0, \phi_0)$  is the 1<sup>st</sup> normalized eigenpair of the cell pb :

$$\begin{cases} -\left(a(y)\phi_0'\right)' + b(y)\rho_0 \ \phi_0 = \mu_0\phi_0, \ \text{ in } Y, \\ \phi_0 \in H^1_{\#}(Y) \end{cases}$$

- $\mu_0 > 0$  simple
- $\phi_0 > 0, \, \phi_0 \in H^1_{\#}(Y), \, {
  m continuous}$

• 
$$\tilde{a}^h := \left(\frac{1}{|Y|} \int_Y \frac{1}{a(y)[\phi_0(y)]^2} \, dy\right)^{-1}$$

Theorem 1  $(\delta = \varepsilon)$ Let  $(\lambda_{\varepsilon,k}, v_{\varepsilon,k})$  be the  $k^{th}$  eigenpair of the rescaled pb for  $\delta = \varepsilon$ . Then

$$\begin{split} \lambda_{\varepsilon,k} &= \frac{\mu_0}{\varepsilon^2} + \nu_{\varepsilon,k} \\ \nu_{\varepsilon,k} &\to \nu_k \\ \nu_{\varepsilon,k} &\to \theta_0(\bar{x}) \ \varphi_k(x_3) \ \text{in} \ L^2(\omega \times I) \end{split}$$

where  $(\nu_k, \varphi_k)$  is a  $k^{th}$  eigenpair :

$$egin{cases} - ilde{a}^harphi''=oldsymbol{
u}arphi\ arphi\in H^1_0(I) \ arphi\in H^1_0(I) \end{cases}$$

and conversely.

П

- $\bullet \ \delta = \varepsilon^\tau, \ 0 < \tau < 1$
- $(\mu_{\varepsilon,0}^{\tau}, \phi_{\varepsilon,0}^{\tau})$  normalized 1<sup>st</sup> eigenpair :

$$\begin{cases} -\varepsilon^{2(\tau-1)} \left( a(y) \phi_{\varepsilon,0}^{\tau}' \right)' + b(y) \rho_0 \phi_{\varepsilon,0}^{\tau} = \mu_{\varepsilon,0}^{\tau} \phi_{\varepsilon,0}^{\tau}, \text{ in } Y, \\ \phi_{\varepsilon,0}^{\tau} \in H^1_{\#}(Y) \end{cases}$$

• 
$$\psi_0 \equiv 1 \text{ in } Y, \quad \gamma_j := \rho_0 \int_Y b(y) \ \psi_j(y) \ dy \ (j \in \mathbb{N}_0)$$

 $\psi_j$  solutions of the recurrence problems in  $H^1_{\#}(Y)$ 

$$\begin{cases} -\left(a(y) \psi_{j}'\right)' = -b(y) \rho_{0} \psi_{j-1} + \sum_{k=0}^{j-1} \gamma_{k} \psi_{j-1-k}, \\ \int_{Y} \psi_{j}(y) dy = 0 \end{cases}$$

•  $a^h := \left(\frac{1}{|Y|} \int_Y \frac{1}{a(y)} dy\right)^{-1}$ 

#### Theorem 2 $(\delta \gg \varepsilon)$

Let  $(\lambda_{\varepsilon,k}, v_{\varepsilon,k})$  be the  $k^{th}$  eigenpair of the rescaled pb and  $i \in \mathbb{N}$ :  $\frac{i-1}{i} < \tau \leq \frac{i}{i+1}$ . Then, as  $\varepsilon \to 0$ ,

$$\mu_{\varepsilon,0}^{\tau} \to \gamma_0 = \rho_0 \int_Y b(y) \, dy, \quad \phi_{\varepsilon,0}^{\tau}(\bar{x}/\varepsilon) \to \psi_0 \equiv 1 \text{ (uniformly)}$$
$$\lambda_{\varepsilon,k} = \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} + \nu_{\varepsilon,k}^{\tau} = \sum_{j=0}^{i} \frac{\gamma_j}{\varepsilon^{2[\tau(j+1)-j]}} + \rho_{\varepsilon,i}^{\tau} + \nu_{\varepsilon,k}^{\tau}$$

• 
$$\rho_{\varepsilon,i}^{\tau} \to 0, \quad \nu_{\varepsilon,k}^{\tau} \to \nu_{k}^{\tau},$$

• 
$$v_{\varepsilon,k} \to \theta_0(\bar{x}) \varphi_k(x_3)$$
, in  $L^2(\omega \times I)$ 

•  $(\nu_k, \varphi_k)$  a  $k^{th}$  eigenpair :

$$\begin{cases} -a^h \varphi_k'' = \nu_k \varphi_k, & \text{in } I, \\ \varphi_k \in H^1_0(I). \end{cases}$$

Luísa Mascarenhas (CMA/FCT/UNL) Asymptotic spectral analysis in nanowires with TNLA 2014, July 31 - August 1 14 / 25

Theorem 2  $(\delta \gg \varepsilon)$ Let  $(\lambda_{\varepsilon,k}, \nu_{\varepsilon,k})$  be the  $k^{th}$  eigenpair of the rescaled pb and  $i \in \mathbb{N}$ :  $\frac{i-1}{i} < \tau \leq \frac{i}{i+1}$ . Then, as  $\varepsilon \to 0$ ,

$$\mu_{\varepsilon,0}^{\tau} \to \gamma_0 = \rho_0 \int_Y b(y) \, dy, \quad \phi_{\varepsilon,0}^{\tau}(\bar{x}/\varepsilon) \to \psi_0 \equiv 1 \text{ (uniformly)}$$
$$\lambda_{\varepsilon,k} = \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} + \nu_{\varepsilon,k}^{\tau} = \sum_{j=0}^{i} \frac{\gamma_j}{\varepsilon^{2[\tau(j+1)-j]}} + \rho_{\varepsilon,i}^{\tau} + \nu_{\varepsilon,k}^{\tau}$$

$$\tau = \frac{1}{2}, \ \lambda_{\varepsilon,k} = \frac{\gamma_0}{\varepsilon} + \gamma_1 + \nu_{\varepsilon,k} + \rho_{\varepsilon,1}^{\tau};$$

• 
$$\rho_{\varepsilon,i}^{\tau} \to 0$$
,  $\nu_{\varepsilon,k}^{\tau} \to \nu_{k}^{\tau}$ ,

• 
$$v_{\varepsilon,k} \to \theta_0(\bar{x}) \varphi_k(x_3)$$
, in  $L^2(\omega \times I)$ 

•  $(\nu_k, \varphi_k)$  a  $k^{th}$  eigenpair :

$$\begin{cases} -a^h \varphi_k'' = \nu_k \varphi_k, & \text{in } I, \\ \varphi_k \in H^1_0(I). \end{cases}$$

П

Luísa Mascarenhas (CMA/FCT/UNL) Asymptotic spectral analysis in nanowires with TNLA 2014, July 31 - August 1 14/25

Theorem 2  $(\delta \gg \varepsilon)$ Let  $(\lambda_{\varepsilon,k}, \nu_{\varepsilon,k})$  be the  $k^{th}$  eigenpair of the rescaled pb and  $i \in \mathbb{N}$ :  $\frac{i-1}{i} < \tau \leq \frac{i}{i+1}$ . Then, as  $\varepsilon \to 0$ ,

$$\mu_{\varepsilon,0}^{\tau} \to \gamma_0 = \rho_0 \int_Y b(y) \, dy, \quad \phi_{\varepsilon,0}^{\tau}(\bar{x}/\varepsilon) \to \psi_0 \equiv 1 \text{ (uniformly)}$$
$$\lambda_{\varepsilon,k} = \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} + \nu_{\varepsilon,k}^{\tau} = \sum_{j=0}^{i} \frac{\gamma_j}{\varepsilon^{2[\tau(j+1)-j]}} + \rho_{\varepsilon,i}^{\tau} + \nu_{\varepsilon,k}^{\tau}$$

$$\begin{aligned} \tau &= \frac{1}{2}, \ \lambda_{\varepsilon,k} = \frac{\gamma_0}{\varepsilon} + \gamma_1 + \nu_{\varepsilon,k} + \rho_{\varepsilon,1}^{\tau}; \\ \tau &= \frac{2}{3}, \ \lambda_{\varepsilon,k} = \frac{\gamma_0}{\varepsilon^{4/3}} + \frac{\gamma_1}{\varepsilon^{2/3}} + \gamma_2 + \nu_{\varepsilon,k} + \rho_{\varepsilon,2}^{\tau} \end{aligned}$$

• 
$$\rho_{\varepsilon,i}^{\tau} \to 0, \quad \nu_{\varepsilon,k}^{\tau} \to \nu_{k}^{\tau},$$

• 
$$v_{\varepsilon,k} \to \theta_0(\bar{x}) \varphi_k(x_3)$$
, in  $L^2(\omega \times I)$ 

•  $(\nu_k, \varphi_k)$  a  $k^{th}$  eigenpair :

$$\begin{cases} -a^h \varphi_k'' = \nu_k \varphi_k, & \text{in } I, \\ \varphi_k \in H_0^1(I). \end{cases}$$

#### Remark

If 
$$\sum_{j \ge 0} \|\psi_j\|_{L^2(Y)} < +\infty$$
 then

$$\sum_{j\geq 0} |\gamma_j| < +\infty$$
  $\sum_{j\geq 0} \gamma_j = \mu_0,$   $\sum_{j\geq 0} \psi_j = rac{\phi_0}{\int_Y \phi_0 \ dar y}.$ 

 $((\mu_0, \phi_0)$  is the 1st eigenpair of the cell pb for  $\tau = 1$ )

Since  $\frac{i-1}{i} < \tau \leq \frac{i}{i+1} < 1$ :

$$\sum_{j=0}^{i} \frac{\gamma_j}{\varepsilon^{\tau(2j+2)-2j}} (\tau < 1) \to \frac{\mu_0}{\varepsilon^2} (\tau = 1)$$

for fixed  $\varepsilon > 0$  and as  $\tau \to 1^- \ (i \to +\infty)$ .

•  $\delta = \varepsilon^{\tau}, \tau > 1$ 

• This case is more delicate to handle due to the degeneracy of the cell pb :

$$\begin{cases} -\varepsilon^{2(\tau-1)} \left( a(y) \phi_{\varepsilon,0}^{\tau}' \right)' + b(y) \rho_0 \phi_{\varepsilon,0}^{\tau} = \mu_{\varepsilon,0}^{\tau} \phi_{\varepsilon,0}^{\tau}, \text{ in } Y, \\ \phi_{\varepsilon,0}^{\tau} \in H^1_{\#}(Y), \end{cases}$$

- The asymptotic behavior of μ<sup>τ</sup><sub>ε,0</sub> depends strongly on the behavior of the potential b.
- We will show two cases, for two different behaviors of *b*



 $\delta \ll \varepsilon$  - case 1

- Let *a* be smooth
- $\exists Q$ , open interval,  $Q \subset \subset Y$ :

• 
$$b \equiv b_{\min} := \min_{Y} b$$
 on  $Q$   
•  $b$  is smooth,  $b > b_{\min}$  on  $Y \setminus Q$ 

• Let  $(\nu_0, q_0)$  be the normalized 1st eigenpair of pb

$$\begin{cases} -\left(a \ q'\right)' = \nu \ q, \text{ a.e. in } Q, \\ q \in H_0^1(Q) \end{cases}$$



# $\delta \ll \varepsilon$ - case 1

Theorem 3 ( $\delta \ll \varepsilon$  - case 1) Let  $i \in \mathbb{N} : i \geq \frac{2}{\tau - 1}$ . Then, as  $\varepsilon \to 0^+$ ,

• 
$$\mu_{\varepsilon,0}^{\tau} o b_{\min} \rho_0$$
,  $\phi_{\varepsilon,0}^{\tau} o q_0$  in  $H^1(Y)$   
•  $\lambda_{\varepsilon,0} = \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} + \nu_{\varepsilon,k}^{\tau} = \frac{b_{\min} \rho_0}{\varepsilon^{2\tau}} + \frac{\nu_0}{\varepsilon^2} + \varepsilon^{\tau-3} \mu_1 + \dots + \varepsilon^{i(\tau-1)-2} \mu_i + \rho_{\varepsilon,i}^{\tau} + \nu_{\varepsilon,0}^{\tau}$   
 $|\rho_{\varepsilon,i}^{\tau}| \leq C \varepsilon^{(i+\frac{1}{2})\tau - (i+\frac{5}{2})} \to 0$   
 $\nu_{\varepsilon,0}^{\tau} := \inf_{\substack{\psi \in H_0^{(I)} \\ \|\phi_{\varepsilon,0}^{\tau}(\frac{1}{\varepsilon})\psi\|_{L^2(I)}^{-1}}} \left\{ \int_{\omega} \left| \phi_{\varepsilon,0}^{\tau} \left( \frac{x_3}{\varepsilon} \right) \right|^2 a\left( \frac{x_3}{\varepsilon} \right) |\psi'|^2 dx_3 \right\} \to 0^+$   
 $\phi_{\varepsilon,0}^{\tau}(y) = \varepsilon^{\tau-1} P_{\varepsilon}(y) + r_{i,\varepsilon}, \quad y \in Y \setminus Q$   
 $\|r_{i,\varepsilon}\|_{L^2(Y \setminus Q)} \leq c_i \, \varepsilon^{2+\frac{1}{i}}; \quad |P_{\varepsilon}(y)|^2 \leq \sum_{m=1}^{i} a_m \left( \frac{y}{\varepsilon} \right)^{j_m} e^{-b_m \frac{y}{\varepsilon}},$   
 $a_m, b_m \in \mathbb{R}^+$  and  $j_m \in \mathbb{N}$  independents of  $\varepsilon$ 

#### Remark

Thm is valid under weaker regularity hypotheses on the coefficients. It suffices that

- *a* are  $C^{i+2}(Y)$ ,
- *b* is  $C^{i+2}(Y \setminus Q)$ ,

where *i* is the smallest natural number satisfying  $i \ge \frac{2}{\tau-1}$ .

The smaller  $\tau - 1 > 0$  is, the more regularity is required

$$\delta \ll \varepsilon$$
 - case 2

 $\delta \ll \varepsilon$  - case 2



• 
$$b(y_0) = b_{\min} := \min_{Y} b$$

• Let *a* be smooth and *b* smooth in a neighborhood of 
$$y_0$$

• Let  $(\nu_0, \psi_0)$  be the 1st normalized eigenpair of the harmonic oscillator

$$\begin{cases} -a(y_0) \ \psi'' + \frac{b''(y_0) \ \rho_0}{2} \ t^2 \ \psi = \nu \ \psi, \text{ a.e. in } \mathbb{R}, \\ \psi \in H_0^1(\mathbb{R}) \end{cases}$$

b

## $\delta \ll \varepsilon$ - case 2

#### Theorem 4 ( $\delta \ll \varepsilon$ - case 2) Let $i \in \mathbb{N}$ : $i \ge \frac{\tau+3}{\tau-1}$ . Then, as $\varepsilon \to 0^+$ ,

• 
$$\mu_{\varepsilon,0}^{\tau} o b_{\min} \rho_0$$
  
•  $\lambda_{\varepsilon,0} = \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} + \nu_{\varepsilon,k}^{\tau} =$   
 $\frac{b_{\min} \rho_0}{\varepsilon^{2\tau}} + \frac{\nu_0}{\varepsilon^{\tau+1}} + \frac{\mu_3}{\varepsilon^{\frac{\tau+3}{2}}} + \dots + \varepsilon^{\frac{i+2}{2}(\tau-1)-2\tau} \mu_{i+2} + \rho_{\varepsilon,i}^{\tau} + \nu_{\varepsilon,0}^{\tau}$   
 $|\rho_{\varepsilon,i}^{\tau}| \le C \varepsilon^{\frac{(i+3)(\tau-1)}{4\tau}} \to 0$   
 $\nu_{\varepsilon,0}^{\tau} := \inf_{\substack{\psi \in H_0^1(I) \\ \|\phi_{\varepsilon,0}^{\tau}(\frac{z}{\varepsilon})\psi\|_{L^2(I)}^{-1}}} \left\{ \int_{\omega} \left|\phi_{\varepsilon,0}^{\tau}\left(\frac{x_3}{\varepsilon}\right)\right|^2 a\left(\frac{x_3}{\varepsilon}\right) |\psi'|^2 dx_3 \right\} \to 0^+$   
 $\phi_{\varepsilon,0}^{\tau}(y) = \varepsilon^{-(\tau-1)/4} \psi_0\left(\frac{y-y_0}{\varepsilon^{(\tau-1)/2}}\right) \sigma_{\varepsilon}(y) + R_{\varepsilon,0}^{\tau}$   
 $\|R_{\varepsilon,0}^{\tau}\|_{L^2(Y)} \le c \varepsilon^{(\tau-1)/2}$ 

 $(\nu_0, \psi_0)$  is the 1<sup>st</sup> normalized eigenpair of the harmonic oscillator  $\sigma_{\varepsilon}$  is a convenient cut-off function in *Y*.

#### Main steps

• Using Proposition 1 we turn the rescaled problem for  $\delta = \varepsilon^{\tau}$ :

$$\begin{cases} -(a_{\varepsilon}v_{\varepsilon}')' - \frac{b_{\varepsilon}}{\varepsilon^{2\tau}}\bar{\Delta}v_{\varepsilon} = \lambda_{\varepsilon}^{\delta}v_{\varepsilon}, & \text{a.e. in } \omega \times I, \\ v_{\varepsilon} \in H_0^1(\omega \times I) \end{cases}$$

into the 1D pb

$$\begin{cases} -(a_{\varepsilon}v_{\varepsilon}')' + \frac{b_{\varepsilon}\rho_0}{\varepsilon^{2\tau}} v_{\varepsilon} = \lambda_{\varepsilon}^{\delta} v_{\varepsilon}, & \text{a.e. in } I, \\ v_{\varepsilon} \in H_0^1(I) \end{cases}$$

• Using Proposition 2 we obtain that :

$$\int_{I} \left( a_{\varepsilon} |v'|^{2} + \frac{b_{\varepsilon}}{\varepsilon^{2\tau}} \rho_{0} |v|^{2} - \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} v \right) dx = \int_{I} \left( a_{\varepsilon} \left[ \phi_{\varepsilon,0}^{\tau} \left( \frac{x_{3}}{\varepsilon} \right) \right]^{2} |u'|^{2} \right) dx$$

 $\lambda_{\varepsilon,k} = \frac{\mu_{\varepsilon,0}^{\tau}}{\varepsilon^{2\tau}} + \nu_{\varepsilon,k}^{\tau} \qquad (\nu_{\varepsilon,k}^{\tau} \text{ are eigenvalues of right hand side pb.})$ 

The crucial point is to analyse the behavior of the 1<sup>st</sup> eigenpair (μ<sup>τ</sup><sub>ε,0</sub>, φ<sub>ε,0</sub>τ) of the cell pb, when τ ≠ 1:

$$\begin{cases} -\varepsilon^{2(\tau-1)} \Big( a(y) \phi_{\varepsilon,0}^{\tau}' \Big)' + b(y) \rho_0 \phi_{\varepsilon,0}^{\tau} = \mu_{\varepsilon,0}^{\tau} \phi_{\varepsilon,0}^{\tau}, & \text{in } Y, \\ \phi_{\varepsilon,0}^{\tau} \in H^1_{\#}(Y) \end{cases}$$

- We use classical homogenization results, formal expansions and Proposition 3, to justify the development of the eigenpair
- The development must attain an order superior to  $2\tau$
- In the degenerate cases \(\tau > 1\) we must also use convenient changes of variables, depending on de behavior of the potencial b.

 $\tau >$  1- case 2 :

• For the particular case *a* constant and  $b(y) = b_{\min} + c(y - 1/2)^2$ , the cell pb will behave like the quantum harmonic oscillator :

$$-a(\phi_{\varepsilon,0}^{\tau})'' + \frac{c\,\rho_0}{\varepsilon^{2(\tau-1)}}\,(y-1/2)^2\,\phi_{\varepsilon,0}^{\tau} = \left(\frac{\mu_{\varepsilon,0}^{\tau} - b_{\min}\,\rho_0}{\varepsilon^{2(\tau-1)}}\right)\,\phi_{\varepsilon,0}^{\tau}$$

This give us a hint of how to analyze the general case.

When the coefficient ν<sub>0</sub> = √ cρ<sub>0</sub>/ε<sup>2(τ-1)</sup> is of order 1/ε<sup>(τ-1)</sup>, then the corresponding principal mode ψ<sub>0</sub> behaves like a function of t/√ε<sup>τ-1</sup>, divided by <sup>4</sup>√ε<sup>τ-1</sup>.

This justifies the following change of variables, forgetting the fixed index  $\tau$  :

$$\epsilon = \sqrt{\varepsilon^{\tau-1}}, \ t = \frac{y - y_0}{\epsilon}, \ \varphi_{\epsilon}(t) = \phi_{\varepsilon}^{\tau}(y_0 + \epsilon t), \ t \in \left[\frac{-y_0}{\epsilon}, \frac{1 - y_0}{\epsilon}\right]$$

- $\tau >$  1- case 2 :
  - Cell pb becomes :

$$\begin{cases} -\epsilon^2 \Big( a(y_0 + \epsilon t)(\varphi_{\epsilon})' \Big)' + b(y_0 + \epsilon t) \rho_0 \varphi_{\epsilon} = \mu_{\epsilon} \varphi_{\epsilon}, \\ \varphi_{\epsilon} \in H^1_{\#} \left( \frac{-y_0}{\epsilon}, \frac{1 - y_0}{\epsilon} \right). \end{cases}$$

• We assume the expansions :

$$\mu_{\epsilon} = b_{\min} \rho_{0} + \epsilon^{2} \mu_{2} + \epsilon^{3} \mu_{3} + \dots + \epsilon^{k} \mu_{k} + \dots$$

$$\varphi_{\epsilon}(t) = \varphi_{0}(t) + \epsilon \varphi_{1}(t) + \epsilon^{2} \varphi_{2}(t) + \dots + \epsilon^{k-2} \varphi_{k-2}(t) + \dots$$

$$a(y_{0} + \epsilon t) = a(y_{0}) + \epsilon a'(y_{0})t + \epsilon^{2} \frac{a''(y_{0})}{2}t^{2} + \dots + \epsilon^{k-1} \frac{a^{(k-1)}(y_{0})}{(k-1)!}t^{k-1} + \epsilon^{k} \frac{a^{(k)}(\theta)}{(k)!}t^{k}$$

$$b(y_{0} + \epsilon t) = b_{\min} + \epsilon^{2} \frac{b''(y_{0})}{2}t^{2} + \epsilon^{3} \frac{b'''(y_{0})}{3!}t^{3} + \dots + \epsilon^{k-1} \frac{b^{(k-1)}(y_{0})}{(k-1)!}t^{k-1} + \epsilon^{k} \frac{b^{(k)}(\xi)}{(k)!}t^{k}$$

• We apply the usual asymptotic techniques.

#### FIM