Asymptotic spectral analysis in nanowires with axial heterogeneities

In collaboration with :
Rita Ferreira \& Andrey Piatnitsky

Motivation

We consider the stationary Schrödinger equation with zero potential in a

$$
\text { thin bounded tubular domain of thickness } \delta: \Omega_{\delta} \subset \mathbb{R}^{3}
$$

To find the spatial wave function ψ_{δ} and the energy levels E reduces to solve :

$$
\begin{cases}-\frac{\hbar^{2}}{2 m} \Delta \psi_{\delta}=E \psi_{\delta}, & \text { in } \Omega_{\delta} \\ \psi_{\delta}=0 & \text { on } \partial \Omega_{\delta}\end{cases}
$$

or, in a standard mathematical notation, forgetting the constants,

$$
\begin{cases}-\Delta v_{\delta}=\lambda^{\delta} v_{\delta}, & \text { in } \Omega_{\delta} \\ v_{\delta}=0 & \text { on } \partial \Omega_{\delta}\end{cases}
$$

where $0<\lambda_{1}^{\delta} \leq \lambda_{2}^{\delta} \leq \cdots \rightarrow+\infty$

Motivation

If the thin tube is non-homogeneous, the particle behaves as if its mass $m(x)$ varies and we are lead to consider the stationary Schrödinger effective-mass equation, with zero potential :

$$
\begin{cases}-\frac{\hbar^{2}}{2} \operatorname{div}\left(\frac{1}{m(x)} \nabla \psi_{\delta}(x)\right)=E \psi_{\delta}(x), & x \in \Omega_{\delta} \\ \psi_{\delta}(x)=0 & x \in \partial \Omega_{\delta}\end{cases}
$$

or, following a more general notation $\left(A(x)=\frac{\hbar^{2}}{2 m(x)} \mathbb{I}\right)$

$$
\begin{cases}-\operatorname{div}\left(A \nabla v_{\delta}\right)=\lambda^{\delta} v_{\delta}, & \text { in } \Omega_{\delta} \\ v_{\delta}=0 & \text { on } \partial \Omega_{\delta}\end{cases}
$$

where again $0<\lambda_{1}^{\delta} \leq \lambda_{2}^{\delta} \leq \cdots \rightarrow+\infty$

- If the properties of the tube vary with high frequency, having ε-periodic heterogeneities, the energy levels will depend strongly on δ (or ε) and on the ratio δ / ε

Problem

$$
\begin{aligned}
& \left\{\begin{array}{l}
-\operatorname{div}\left(A_{\varepsilon} \nabla v_{\varepsilon}^{\delta}\right)=\lambda_{\varepsilon}^{\delta} v_{\varepsilon}^{\delta}, \quad \text { in } \Omega_{\delta} \\
v_{\varepsilon}^{\delta} \in H_{0}^{1}\left(\Omega_{\delta}\right)
\end{array}\right. \\
& 0<\lambda_{\varepsilon}^{\delta, 0} \leqslant \lambda_{\varepsilon}^{\delta, 1} \leqslant \cdots \leqslant \lambda_{\varepsilon}^{\delta, i} \leqslant \lambda_{\varepsilon}^{\delta, i+1} \leqslant \cdots \\
& \delta \rightarrow 0 \Rightarrow \lambda_{\varepsilon}^{\delta, i} \rightarrow+\infty, \quad \forall i
\end{aligned}
$$

- We analyse ε - periodic axial heterogeneities:
$A_{\varepsilon}(x)=A\left(x_{3} / \varepsilon\right), \quad A$ is $[0,1]$ - periodic in \mathbb{R}
- We study the behavior of spectrum as $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$
- We look for the 1D limit problem

Notations and hypothesis

$\delta, \varepsilon>0$ small parameters
$\Omega_{\delta}:=\delta \omega \times I, \quad \omega \subset \mathbb{R}^{2}, \quad I:=(0, L)$
$x^{\delta}=\left(\delta \bar{x}, x_{3}\right) \in \Omega_{\delta}, \quad \bar{x}=\left(x_{1}, x_{2}\right) \in \omega, \quad x_{3} \in I, \quad Y:=[0,1]$
$u^{\prime}:=\frac{\partial u}{\partial x_{3}}, \quad \bar{\Delta} u:=\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}$
$A \in\left[L^{\infty}(\mathbb{R})\right]^{3 \times 3}$, diagonal, Y-periodic,

$$
\begin{aligned}
A(y) & =\operatorname{diag}(b(y), b(y), a(y)) \\
& \eta \leq a(y), b(y) \leq \zeta,
\end{aligned}
$$

for a.e. $y \in Y$ and for some $0<\eta<\zeta$

$$
\begin{aligned}
A_{\varepsilon}\left(x_{3}\right) & =\operatorname{diag}\left(b_{\varepsilon}\left(x_{3}\right), b_{\varepsilon}\left(x_{3}\right), a_{\varepsilon}\left(x_{3}\right)\right) \\
a_{\varepsilon}\left(x_{3}\right) & =a\left(\frac{x_{3}}{\varepsilon}\right), \quad b_{\varepsilon}\left(x_{3}\right)=b\left(\frac{x_{3}}{\varepsilon}\right)
\end{aligned}
$$

Rescaled problem

Usual procedure : change of variables, setting the problem in the fixed domain $\omega \times I$:

$$
\begin{gathered}
x^{\delta}=\left(\bar{x}^{\delta}, x_{3}\right) \in \Omega_{\delta}=\delta \omega \times I \mapsto x=\left(\frac{\bar{x}^{\delta}}{\delta}, x_{3}\right) \in \omega \times I \\
\tilde{v}_{\varepsilon}^{\delta}\left(x^{\delta}\right)=v_{\varepsilon}^{\delta}(x)
\end{gathered}
$$

obtaining the rescaled problem :

$$
\left\{\begin{array}{l}
-\left(a_{\varepsilon}\left(v_{\varepsilon}^{\delta}\right)^{\prime}\right)^{\prime}-\frac{b_{\varepsilon}}{\delta^{2}} \bar{\Delta} v_{\varepsilon}^{\delta}=\lambda_{\varepsilon}^{\delta} v_{\varepsilon}^{\delta}, \quad \text { a.e. in } \omega \times I, \\
v_{\varepsilon}^{\delta} \in H_{0}^{1}(\omega \times I)
\end{array}\right.
$$

$$
\begin{array}{ll}
3 \text { cases }: \delta=\varepsilon^{\tau} \quad\left(\delta / \varepsilon=\varepsilon^{(\tau-1)}\right) \\
\varepsilon \approx \delta: & \tau=1 \\
\varepsilon \ll \delta: & \tau<1 \\
\varepsilon \gg \delta: & \tau>1
\end{array}
$$

Cellular and cross section problems

$$
3 \text { cases : } \varepsilon \approx \delta: \quad \tau=1 ; \quad \varepsilon \ll \delta: \quad \tau<1 ; \quad \varepsilon \gg \delta: \quad \tau>1
$$

We introduce the $1^{s t}$ normalized eigenpair $\left(\mu_{\varepsilon, 0}^{\tau}, \phi_{\varepsilon, 0}^{\tau}\right)$ of the 1D cell problem

$$
\left\{\begin{array}{l}
-\varepsilon^{2(\tau-1)}\left(a\left(\phi_{\varepsilon}^{\tau}\right)^{\prime}\right)^{\prime}+b \rho_{0} \phi_{\varepsilon}^{\tau}=\mu_{\varepsilon}^{\tau} \phi_{\varepsilon}^{\tau}, \text { in } Y, \\
\phi_{\varepsilon}^{\tau} \in H_{\#}^{1}(Y),
\end{array}\right.
$$

where ρ_{0} is the $1^{s t}$ eigenvalue of the following 2D problem in the cross section ω :

$$
\left\{\begin{array}{l}
-\Delta \theta=\rho \theta, \text { in } \omega, \\
\theta \in H_{0}^{1}(\omega),
\end{array}\right.
$$

$\mu_{\varepsilon, 0}^{\tau}$ and ρ_{0} are real, positive and simple, and the associated normalized eigenfunctions $\phi_{\varepsilon, 0}^{\tau}$ and θ_{0} may be chosen to be a strictly positive.
$\phi_{\varepsilon, 0}^{\tau}$ is absolutely continuous.

Auxiliar results

Proposition 1

For each fixed τ, ε, we reduce the 3 D eigenvalue pb to a family of 1 D eigenvalue pbs , parametrized by the 2D eigenvalues in the cross section ω.

For n fixed, let $\left\{\lambda_{k}^{(n)}\right\}_{k \geq 0}$ be the k-sequence of eigenvalues for the 1 D spectral pb :

$$
\left\{\begin{array}{l}
-\left(a \varphi^{\prime}\right)^{\prime}+b \rho_{n} \varphi=\lambda \varphi, \text { a.e. in } I, \\
\varphi \in H_{0}^{1}(I)
\end{array}\right.
$$

where $\left\{\rho_{n}\right\}$ is the sequence of eigenvalues of the 2 D cross section pb .
Then, $\left\{\lambda_{k}^{(n)}\right\}_{k, n \geq 0}$ coincides with the sequence $\left\{\tilde{\lambda}_{m}\right\}$ of eigenvalues, repeated according to their multiplicity, of the 3D pb

$$
\left\{\begin{array}{l}
-\left(a v^{\prime}\right)^{\prime}-b \bar{\Delta} v=\lambda v, \text { a.e. in } \omega \times I \\
v \in H_{0}^{1}(\omega \times I)
\end{array}\right.
$$

The corresponding modes $\left\{v_{k}^{(n)}\right\}_{k, n \geq 0}$ are products $\theta_{n}(\bar{x}) \varphi_{k}^{(n)}\left(x_{3}\right)$.

Auxiliar results

Proposition 2
Fix $\tau, \varepsilon>0$. Let $\left(\mu_{\varepsilon, 0}^{\tau}, \phi_{\varepsilon, 0}^{\tau}\right)$ be the $1^{s t}$ normalized eigenpair of the 1 D cell pb .
Relate v and u by the formula

$$
v\left(x_{3}\right)=\phi_{\varepsilon, 0}^{\tau}\left(\frac{x_{3}}{\varepsilon}\right) u\left(x_{3}\right), \text { a.e. } x_{3} \in I
$$

Then

- $v \in H_{0}^{1}(I) \Longleftrightarrow u \in H_{0}^{1}(I)$
- $\int_{I}\left(a_{\varepsilon}\left|v^{\prime}\right|^{2}+\frac{b_{\varepsilon}}{\varepsilon^{2 \tau}} \rho_{0}|v|^{2}-\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}|v|^{2}\right) d x_{3}=\int_{I}\left(a_{\varepsilon}\left[\phi_{\varepsilon, 0}^{\tau}\left(\frac{x_{3}}{\varepsilon}\right)\right]^{2}\left|u^{\prime}\right|^{2}\right) d x_{3}$
- $\lambda_{\varepsilon, k}=\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}+\nu_{\varepsilon, k}^{\tau} \quad\left(\nu_{\varepsilon, k}^{\tau}\right.$ are eigenvalues of right hand side pb$)$

Remark : The crucial point is to analyse the behavior of the $1^{\text {st }}$ eigenpair $\left(\mu_{\varepsilon, 0}^{\tau}, \phi_{\varepsilon, 0} \tau\right)$ of the cell pb , when $\tau \neq 1$

Auxiliar results

Proposition 3 (Vishik - Lyusternik)
Let $L: H \rightarrow H$ be a linear compact self-adjoint operator in a Hilbert space H, and suppose that $\lambda>0$ and $f \in H$ are such that

$$
\|L f-\lambda f\|_{H} \leq \gamma
$$

Then

- There exists an eigenvalue $\bar{\lambda}$ of L :

$$
|\bar{\lambda}-\lambda| \leq \gamma\|f\|_{H}^{-1}
$$

- For $d>\gamma\|f\|_{H}^{-1}$, there exists a $\bar{f},\|\bar{f}\|_{H}=\|f\|_{H}$, linear combination of eigenvectors associated with the eigenvalues lying in the interval $[\lambda-d, \lambda+d]$, satisfying

$$
\|\bar{f}-f\|_{H} \leq 2 d^{-1} \gamma
$$

Case $\delta=\varepsilon$

- $\delta=\varepsilon(\tau=1)$
- $\left(\mu_{0}, \phi_{0}\right)$ is the $1^{s t}$ normalized eigenpair of the cell pb :

$$
\left\{\begin{array}{l}
-\left(a(y) \phi_{0}^{\prime}\right)^{\prime}+b(y) \rho_{0} \phi_{0}=\mu_{0} \phi_{0}, \text { in } Y, \\
\phi_{0} \in H_{\#}^{1}(Y)
\end{array}\right.
$$

- $\mu_{0}>0$ simple
- $\phi_{0}>0, \phi_{0} \in H_{\#}^{1}(Y)$, continuous
- $\tilde{a}^{h}:=\left(\frac{1}{|Y|} \int_{Y} \frac{1}{a(y)\left[\phi_{0}(y)\right]^{2}} d y\right)^{-1}$

Case $\delta=\varepsilon$

Theorem $1(\delta=\varepsilon)$
Let $\left(\lambda_{\varepsilon, k}, \nu_{\varepsilon, k}\right)$ be the $k^{\text {th }}$ eigenpair of the rescaled pb for $\delta=\varepsilon$.
Then
$\lambda_{\varepsilon, k}=\frac{\mu_{0}}{\varepsilon^{2}}+\nu_{\varepsilon, k}$
$\nu_{\varepsilon, k} \rightarrow \nu_{k}$
$v_{\varepsilon, k} \rightharpoonup \theta_{0}(\bar{x}) \varphi_{k}\left(x_{3}\right)$ in $L^{2}(\omega \times I)$
where $\left(\nu_{k}, \varphi_{k}\right)$ is a $k^{t h}$ eigenpair :

$$
\left\{\begin{array}{l}
-\tilde{a}^{h} \varphi^{\prime \prime}=\nu \varphi \\
\varphi \in H_{0}^{1}(I)
\end{array}\right.
$$

and conversely.

Case $\delta \gg \varepsilon$

- $\delta=\varepsilon^{\tau}, 0<\tau<1$
- $\left(\mu_{\varepsilon, 0}^{\tau}, \phi_{\varepsilon, 0}^{\tau}\right)$ normalized $1^{\text {st }}$ eigenpair :

$$
\left\{\begin{array}{l}
-\varepsilon^{2(\tau-1)}\left(a(y) \phi_{\varepsilon, 0}^{\tau}\right)^{\prime}+b(y) \rho_{0} \phi_{\varepsilon, 0}^{\tau}=\mu_{\varepsilon, 0}^{\tau} \phi_{\varepsilon, 0}^{\tau}, \text { in } Y, \\
\phi_{\varepsilon, 0}^{\tau} \in H_{\#}^{1}(Y)
\end{array}\right.
$$

- $\psi_{0} \equiv 1$ in $Y, \quad \gamma_{j}:=\rho_{0} \int_{Y} b(y) \psi_{j}(y) d y \quad\left(j \in \mathbb{N}_{0}\right)$
ψ_{j} solutions of the recurrence problems in $H_{\#}^{1}(Y)$

$$
\left\{\begin{array}{l}
-\left(a(y) \psi_{j}^{\prime}\right)^{\prime}=-b(y) \rho_{0} \psi_{j-1}+\sum_{k=0}^{j-1} \gamma_{k} \psi_{j-1-k}, \\
\int_{Y} \psi_{j}(y) d y=0
\end{array}\right.
$$

- $a^{h}:=\left(\frac{1}{|Y|} \int_{Y} \frac{1}{a(y)} d y\right)^{-1}$

Case $\delta \gg \varepsilon$

Theorem $2(\delta \gg \varepsilon)$
Let $\left(\lambda_{\varepsilon, k}, v_{\varepsilon, k}\right)$ be the $k^{t h}$ eigenpair of the rescaled pb and $i \in \mathbb{N}: \frac{i-1}{i}<\tau \leq \frac{i}{i+1}$.
Then, as $\varepsilon \rightarrow 0$,
$\mu_{\varepsilon, 0}^{\tau} \rightarrow \gamma_{0}=\rho_{0} \int_{Y} b(y) d y, \quad \phi_{\varepsilon, 0}^{\tau}(\bar{x} / \varepsilon) \rightarrow \psi_{0} \equiv 1$ (uniformly)
$\lambda_{\varepsilon, k}=\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}+\nu_{\varepsilon, k}^{\tau}=\sum_{j=0}^{i} \frac{\gamma_{j}}{\varepsilon^{2[\tau(j+1)-j]}}+\rho_{\varepsilon, i}^{\tau}+\nu_{\varepsilon, k}^{\tau}$

- $\rho_{\varepsilon, i}^{\tau} \rightarrow 0, \quad \nu_{\varepsilon, k}^{\tau} \rightarrow \nu_{k}^{\tau}$,
- $v_{\varepsilon, k} \rightarrow \theta_{0}(\bar{x}) \varphi_{k}\left(x_{3}\right), \quad$ in $L^{2}(\omega \times I)$
- $\left(\nu_{k}, \varphi_{k}\right)$ a $k^{t h}$ eigenpair :

$$
\left\{\begin{array}{l}
-a^{h} \varphi_{k}^{\prime \prime}=\nu_{k} \varphi_{k}, \text { in } I, \\
\varphi_{k} \in H_{0}^{1}(I) .
\end{array}\right.
$$

Case $\delta \gg \varepsilon$

Theorem $2(\delta \gg \varepsilon)$
Let $\left(\lambda_{\varepsilon, k}, \nu_{\varepsilon, k}\right)$ be the $k^{t h}$ eigenpair of the rescaled pb and $i \in \mathbb{N}: \frac{i-1}{i}<\tau \leq \frac{i}{i+1}$.
Then, as $\varepsilon \rightarrow 0$,
$\mu_{\varepsilon, 0}^{\tau} \rightarrow \gamma_{0}=\rho_{0} \int_{Y} b(y) d y, \quad \phi_{\varepsilon, 0}^{\tau}(\bar{x} / \varepsilon) \rightarrow \psi_{0} \equiv 1$ (uniformly)
$\lambda_{\varepsilon, k}=\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}+\nu_{\varepsilon, k}^{\tau}=\sum_{j=0}^{i} \frac{\gamma_{j}}{\varepsilon^{2[\tau(j+1)-j]}}+\rho_{\varepsilon, i}^{\tau}+\nu_{\varepsilon, k}^{\tau}$
$\tau=\frac{1}{2}, \quad \lambda_{\varepsilon, k}=\frac{\gamma_{0}}{\varepsilon}+\gamma_{1}+\nu_{\varepsilon, k}+\rho_{\varepsilon, 1}^{\tau} ;$

- $\rho_{\varepsilon, i}^{\tau} \rightarrow 0, \quad \nu_{\varepsilon, k}^{\tau} \rightarrow \nu_{k}^{\tau}$,
- $v_{\varepsilon, k} \rightarrow \theta_{0}(\bar{x}) \varphi_{k}\left(x_{3}\right), \quad$ in $L^{2}(\omega \times I)$
- $\left(\nu_{k}, \varphi_{k}\right)$ a $k^{t h}$ eigenpair :

$$
\left\{\begin{array}{l}
-a^{h} \varphi_{k}^{\prime \prime}=\nu_{k} \varphi_{k}, \text { in } I \\
\varphi_{k} \in H_{0}^{1}(I)
\end{array}\right.
$$

Case $\delta \gg \varepsilon$

Theorem $2(\delta \gg \varepsilon)$
Let $\left(\lambda_{\varepsilon, k}, \nu_{\varepsilon, k}\right)$ be the $k^{t h}$ eigenpair of the rescaled pb and $i \in \mathbb{N}: \frac{i-1}{i}<\tau \leq \frac{i}{i+1}$.
Then, as $\varepsilon \rightarrow 0$,
$\mu_{\varepsilon, 0}^{\tau} \rightarrow \gamma_{0}=\rho_{0} \int_{Y} b(y) d y, \quad \phi_{\varepsilon, 0}^{\tau}(\bar{x} / \varepsilon) \rightarrow \psi_{0} \equiv 1$ (uniformly)
$\lambda_{\varepsilon, k}=\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}+\nu_{\varepsilon, k}^{\tau}=\sum_{j=0}^{i} \frac{\gamma_{j}}{\varepsilon^{2[\tau(j+1)-j]}}+\rho_{\varepsilon, i}^{\tau}+\nu_{\varepsilon, k}^{\tau}$
$\tau=\frac{1}{2}, \quad \lambda_{\varepsilon, k}=\frac{\gamma_{0}}{\varepsilon}+\gamma_{1}+\nu_{\varepsilon, k}+\rho_{\varepsilon, 1}^{\tau} ;$
$\tau=\frac{2}{3}, \quad \lambda_{\varepsilon, k}=\frac{\gamma_{0}}{\varepsilon^{4 / 3}}+\frac{\gamma_{1}}{\varepsilon^{2 / 3}}+\gamma_{2}+\nu_{\varepsilon, k}+\rho_{\varepsilon, 2}^{\tau}$

- $\rho_{\varepsilon, i}^{\tau} \rightarrow 0, \quad \nu_{\varepsilon, k}^{\tau} \rightarrow \nu_{k}^{\tau}$,
- $v_{\varepsilon, k} \rightarrow \theta_{0}(\bar{x}) \varphi_{k}\left(x_{3}\right), \quad$ in $L^{2}(\omega \times I)$
- $\left(\nu_{k}, \varphi_{k}\right)$ a $k^{t h}$ eigenpair :

$$
\left\{\begin{array}{l}
-a^{h} \varphi_{k}^{\prime \prime}=\nu_{k} \varphi_{k}, \text { in } I, \\
\varphi_{k} \in H_{0}^{1}(I) .
\end{array}\right.
$$

Case $\delta \gg \varepsilon$

Remark
If $\sum_{j \geqslant 0}\left\|\psi_{j}\right\|_{L^{2}(Y)}<+\infty$ then
$\sum_{j \geq 0}\left|\gamma_{j}\right|<+\infty \quad \sum_{j \geq 0} \gamma_{j}=\mu_{0}, \quad \sum_{j \geq 0} \psi_{j}=\frac{\phi_{0}}{\int_{Y} \phi_{0} d \bar{y}}$.
$\left(\left(\mu_{0}, \phi_{0}\right)\right.$ is the 1 st eigenpair of the cell pb for $\left.\tau=1\right)$
Since $\frac{i-1}{i}<\tau \leqslant \frac{i}{i+1}<1$:

$$
\sum_{j=0}^{i} \frac{\gamma_{j}}{\varepsilon^{\tau(2 j+2)-2 j}}(\tau<1) \rightarrow \frac{\mu_{0}}{\varepsilon^{2}}(\tau=1)
$$

for fixed $\varepsilon>0$ and as $\tau \rightarrow 1^{-}(i \rightarrow+\infty)$.

Cases $\delta \ll \varepsilon$

- $\delta=\varepsilon^{\tau}, \tau>1$
- This case is more delicate to handle due to the degeneracy of the cell pb :

$$
\left\{\begin{array}{l}
-\varepsilon^{2(\tau-1)}\left(a(y) \phi_{\varepsilon, 0}^{\tau}\right)^{\prime}+b(y) \rho_{0} \phi_{\varepsilon, 0}^{\tau}=\mu_{\varepsilon, 0}^{\tau} \phi_{\varepsilon, 0}^{\tau}, \text { in } Y \\
\phi_{\varepsilon, 0}^{\tau} \in H_{\#}^{1}(Y)
\end{array}\right.
$$

- The asymptotic behavior of $\mu_{\varepsilon, 0}^{\tau}$ depends strongly on the behavior of the potential b.
- We will show two cases, for two different behaviors of b

$\delta \ll \varepsilon$ - case 1
- Let a be smooth
- $\exists Q$, open interval, $Q \subset \subset Y$:
- $b \equiv b_{\min }:=\min _{Y} b$ on Q
- b is smooth, $b>b_{\text {min }}$ on $Y \backslash Q$
- Let $\left(\nu_{0}, q_{0}\right)$ be the normalized 1 st eigenpair of pb

$$
\left\{\begin{array}{l}
-\left(a q^{\prime}\right)^{\prime}=\nu q, \text { a.e. in } Q \\
q \in H_{0}^{1}(Q)
\end{array}\right.
$$

$\delta \ll \varepsilon$ - case 1

Theorem $3\left(\delta \ll \varepsilon\right.$-case 1) Let $i \in \mathbb{N}: i \geq \frac{2}{\tau-1}$. Then, as $\varepsilon \rightarrow 0^{+}$,

- $\mu_{\varepsilon, 0}^{\tau} \rightarrow b_{\text {min }} \rho_{0}, \quad \phi_{\varepsilon, 0}^{\tau} \rightharpoonup q_{0}$ in $H^{1}(Y)$

$$
\begin{aligned}
& -\lambda_{\varepsilon, 0}=\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}+\nu_{\varepsilon, k}^{\tau}=\frac{b_{\min } \rho_{0}}{\varepsilon^{2 \tau}}+\frac{\nu_{0}}{\varepsilon^{2}}+\varepsilon^{\tau-3} \mu_{1}+\cdots+\varepsilon^{i(\tau-1)-2} \mu_{i}+\rho_{\varepsilon, i}^{\tau}+\nu_{\varepsilon, 0}^{\tau} \\
& \left|\rho_{\varepsilon, i}^{\tau}\right| \leqslant C \varepsilon^{\left(i+\frac{1}{2}\right) \tau-\left(i+\frac{5}{2}\right)} \rightarrow 0
\end{aligned}
$$

$$
\nu_{\varepsilon, 0}^{\tau}:=\inf _{\psi \in H_{0}^{1}(l)} \quad\left\{\int_{\omega}\left|\phi_{\varepsilon, 0}^{\tau}\left(\frac{x_{3}}{\varepsilon}\right)\right|^{2} a\left(\frac{x_{3}}{\varepsilon}\right)\left|\psi^{\prime}\right|^{2} d x_{3}\right\} \rightarrow 0^{+}
$$

$$
\left\|\phi_{\varepsilon, 0}^{\tau}(\dot{\bar{\varepsilon}})^{\psi}\right\|_{L^{2}(l)}=1
$$

$$
\phi_{\varepsilon, 0}^{\tau}(y)=\varepsilon^{\tau-1} P_{\varepsilon}(y)+r_{i, \varepsilon}, \quad y \in Y \backslash Q
$$

$$
\left\|r_{i, \varepsilon}\right\|_{L^{2}(Y \backslash Q)} \leq c_{i} \varepsilon^{2+\frac{1}{i}} ; \quad\left|P_{\varepsilon}(y)\right|^{2} \leqslant \sum_{m=1}^{i} a_{m}\left(\frac{y}{\varepsilon}\right)^{j_{m}} e^{-b_{m} \frac{y}{\varepsilon}}
$$

$a_{m}, b_{m} \in \mathbb{R}^{+}$and $j_{m} \in \mathbb{N}$ independents of ε

Remark
Thm is valid under weaker regularity hypotheses on the coefficients. It suffices that

- a are $C^{i+2}(Y)$,
- b is $C^{i+2}(Y \backslash Q)$,
where i is the smallest natural number satisfying $i \geq \frac{2}{\tau-1}$.
The smaller $\tau-1>0$ is, the more regularity is required

- Let b have a strict minimum in an interior point $y_{0} \in Y$
- $b\left(y_{0}\right)=b_{\min }:=\min _{Y} b$
- $b^{\prime}\left(y_{0}\right)=0$
- $b^{\prime \prime}\left(y_{0}\right)>0$
- Let a be smooth and b smooth in a neighborhood of y_{0}
- Let $\left(\nu_{0}, \psi_{0}\right)$ be the 1 st normalized eigenpair of the harmonic oscillator

$$
\left\{\begin{array}{l}
-a\left(y_{0}\right) \psi^{\prime \prime}+\frac{b^{\prime \prime}\left(y_{0}\right) \rho_{0}}{2} t^{2} \psi=\nu \psi, \text { a.e. in } \mathbb{R}, \\
\psi \in H_{0}^{1}(\mathbb{R})
\end{array}\right.
$$

$\delta \ll \varepsilon$ - case 2

Theorem $4\left(\delta \ll \varepsilon\right.$-case 2) Let $i \in \mathbb{N}: i \geq \frac{\tau+3}{\tau-1}$. Then, as $\varepsilon \rightarrow 0^{+}$,

- $\mu_{\varepsilon, 0}^{\tau} \rightarrow b_{\text {min }} \rho_{0}$
- $\lambda_{\varepsilon, 0}=\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}+\nu_{\varepsilon, k}^{\tau}=$
$\frac{b_{\min } \rho_{0}}{\varepsilon^{2 \tau}}+\frac{\nu_{0}}{\varepsilon^{\tau+1}}+\frac{\mu_{3}}{\varepsilon^{\frac{\tau+3}{2}}}+\cdots+\varepsilon^{\frac{i+2}{2}(\tau-1)-2 \tau} \mu_{i+2}+\rho_{\varepsilon, i}^{\tau}+\nu_{\varepsilon, 0}^{\tau}$
$\left|\rho_{\varepsilon, i}^{\tau}\right| \leq C \varepsilon^{\frac{(i+3)(\tau-1)}{4 \tau}} \rightarrow 0$
$\nu_{\varepsilon, 0}^{\tau}:=\inf _{\psi \in H_{0}^{\mathrm{j}}(l)} \quad\left\{\int_{\omega}\left|\phi_{\varepsilon, 0}^{\tau}\left(\frac{x_{3}}{\varepsilon}\right)\right|^{2} a\left(\frac{x_{3}}{\varepsilon}\right)\left|\psi^{\prime}\right|^{2} d x_{3}\right\} \rightarrow 0^{+}$

$$
\left\|\phi_{\varepsilon, 0}^{\tau}(\dot{\bar{\varepsilon}}) \psi\right\|_{L^{2}(l)}=1
$$

$$
\phi_{\varepsilon, 0}^{\tau}(y)=\varepsilon^{-(\tau-1) / 4} \psi_{0}\left(\frac{y-y_{0}}{\varepsilon^{(\tau-1) / 2}}\right) \sigma_{\varepsilon}(y)+R_{\varepsilon, 0}^{\tau}
$$

$$
\left\|R_{\varepsilon, 0}^{\tau}\right\|_{L^{2}(Y)} \leq c \varepsilon^{(\tau-1) / 2}
$$

$\left(\nu_{0}, \psi_{0}\right)$ is the $1^{s t}$ normalized eigenpair of the harmonic oscillator σ_{ε} is a convenient cut-off function in Y.

Idea of the proofs

Main steps

- Using Proposition 1 we turn the rescaled problem for $\delta=\varepsilon^{\tau}$:

$$
\left\{\begin{array}{l}
-\left(a_{\varepsilon} v_{\varepsilon}^{\prime}\right)^{\prime}-\frac{b_{\varepsilon}}{\varepsilon^{2} \tau} \bar{\Delta} v_{\varepsilon}=\lambda_{\varepsilon}^{\delta} v_{\varepsilon}, \quad \text { a.e. in } \omega \times I \\
v_{\varepsilon} \in H_{0}^{1}(\omega \times I)
\end{array}\right.
$$

into the 1 D pb

$$
\left\{\begin{array}{l}
-\left(a_{\varepsilon} v_{\varepsilon}^{\prime}\right)^{\prime}+\frac{b_{\varepsilon} \rho_{0}}{\varepsilon^{2 \tau}} v_{\varepsilon}=\lambda_{\varepsilon}^{\delta} v_{\varepsilon}, \quad \text { a.e. in } I \\
v_{\varepsilon} \in H_{0}^{1}(I)
\end{array}\right.
$$

- Using Proposition 2 we obtain that :

$$
\begin{aligned}
& \int_{I}\left(a_{\varepsilon}\left|v^{\prime}\right|^{2}+\frac{b_{\varepsilon}}{\varepsilon^{2 \tau}} \rho_{0}|v|^{2}-\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}} v\right) d x=\int_{I}\left(a_{\varepsilon}\left[\phi_{\varepsilon, 0}^{\tau}\left(\frac{x_{3}}{\varepsilon}\right)\right]^{2}\left|u^{\prime}\right|^{2}\right) d x \\
& \lambda_{\varepsilon, k}=\frac{\mu_{\varepsilon, 0}^{\tau}}{\varepsilon^{2 \tau}}+\nu_{\varepsilon, k}^{\tau} \quad\left(\nu_{\varepsilon, k}^{\tau} \text { are eigenvalues of right hand side pb. }\right)
\end{aligned}
$$

Idea of the proofs

- The crucial point is to analyse the behavior of the $1^{s t}$ eigenpair $\left(\mu_{\varepsilon, 0}^{\tau}, \phi_{\varepsilon, 0} \tau\right)$ of the cell pb , when $\tau \neq 1$:

$$
\left\{\begin{array}{l}
-\varepsilon^{2(\tau-1)}\left(a(y) \phi_{\varepsilon, 0}^{\tau}\right)^{\prime}+b(y) \rho_{0} \phi_{\varepsilon, 0}^{\tau}=\mu_{\varepsilon, 0}^{\tau} \phi_{\varepsilon, 0}^{\tau}, \text { in } Y, \\
\phi_{\varepsilon, 0}^{\tau} \in H_{\#}^{1}(Y)
\end{array}\right.
$$

- We use classical homogenization results, formal expansions and Proposition 3, to justify the development of the eigenpair
- The development must attain an order superior to 2τ
- In the degenerate cases $\tau>1$ we must also use convenient changes of variables, depending on de behavior of the potencial b.

Idea of the proofs

$\tau>1$ - case 2 :

- For the particular case a constant and $b(y)=b_{\text {min }}+c(y-1 / 2)^{2}$, the cell pb will behave like the quantum harmonic oscillator :

$$
-a\left(\phi_{\varepsilon, 0}^{\tau}\right)^{\prime \prime}+\frac{c \rho_{0}}{\varepsilon^{2(\tau-1)}}(y-1 / 2)^{2} \phi_{\varepsilon, 0}^{\tau}=\left(\frac{\mu_{\varepsilon, 0}^{\tau}-b_{\min } \rho_{0}}{\varepsilon^{2(\tau-1)}}\right) \phi_{\varepsilon, 0}^{\tau}
$$

This give us a hint of how to analyze the general case.

- When the coefficient $\nu_{0}=\sqrt{\frac{c \rho_{0}}{\varepsilon^{2(\tau-1)}}}$ is of order $1 / \varepsilon^{(\tau-1)}$, then the corresponding principal mode ψ_{0} behaves like a function of $t / \sqrt{\varepsilon^{\tau-1}}$, divided by $\sqrt[4]{\varepsilon^{\tau-1}}$.
This justifies the following change of variables, forgetting the fixed index τ :

$$
\epsilon=\sqrt{\varepsilon^{\tau-1}}, \quad t=\frac{y-y_{0}}{\epsilon}, \quad \varphi_{\epsilon}(t)=\phi_{\varepsilon}^{\tau}\left(y_{0}+\epsilon t\right), \quad t \in\left[\frac{-y_{0}}{\epsilon}, \frac{1-y_{0}}{\epsilon}\right]
$$

Idea of the proofs

$\tau>1$ - case $2:$

- Cell pb becomes :

$$
\left\{\begin{array}{l}
-\epsilon^{2}\left(a\left(y_{0}+\epsilon t\right)\left(\varphi_{\epsilon}\right)^{\prime}\right)^{\prime}+b\left(y_{0}+\epsilon t\right) \rho_{0} \varphi_{\epsilon}=\mu_{\epsilon} \varphi_{\epsilon} \\
\varphi_{\epsilon} \in H_{\#}^{1}\left(\frac{-y_{0}}{\epsilon}, \frac{1-y_{0}}{\epsilon}\right)
\end{array}\right.
$$

- We assume the expansions :
$\mu_{\epsilon}=b_{\min } \rho_{0}+\epsilon^{2} \mu_{2}+\epsilon^{3} \mu_{3}+\cdots+\epsilon^{k} \mu_{k}+\cdots$
$\varphi_{\epsilon}(t)=\varphi_{0}(t)+\epsilon \varphi_{1}(t)+\epsilon^{2} \varphi_{2}(t)+\cdots+\epsilon^{k-2} \varphi_{k-2}(t)+\cdots$
$a\left(y_{0}+\epsilon t\right)=a\left(y_{0}\right)+\epsilon a^{\prime}\left(y_{0}\right) t+\epsilon^{2} \frac{a^{\prime \prime}\left(y_{0}\right)}{2} t^{2}+\cdots+\epsilon^{k-1} \frac{a^{(k-1)}\left(y_{0}\right)}{(k-1)!} t^{k-1}+\epsilon^{k} \frac{a^{(k)}(\theta)}{(k)!} t^{k}$
$b\left(y_{0}+\epsilon t\right)=b_{\min }+\epsilon^{2} \frac{b^{\prime \prime}\left(y_{0}\right)}{2} t^{2}+\epsilon^{3} \frac{b^{\prime \prime \prime}\left(y_{0}\right)}{3!} t^{3}+\cdots \epsilon^{k-1} \frac{b^{(k-1)}\left(y_{0}\right)}{(k-1)!} t^{k-1}+\epsilon^{k} \frac{b^{(k)}(\xi)}{(k)!} t^{k}$
- We apply the usual asymptotic techniques.

FIM

