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Two thin-film problems in
micromagnetics and nonlinear elasticity
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Micromagnetics

w X (0,¢€), w C R? bounded.

5 =
Q. — S? magnetization (locally saturated). |
€

Q
m:
h:

%
3 — RR® induced magnetic field.

2

Micromagnetic free energy (Brown '63, Landau & Lifshitz '35)

1 1 1
—/ a|Vmlf? dx+—/ w(m) dx+—/ |h|? dx,
g Q. g Q. 2 R3

exchange energy anisotropy energy magnetostatic energy

it (m, h) meet the static Maxwell equations

div(m+h)=0 inR®
culh=0 in R3.

Question: Asymptotic behaviorase | 0 ?

Several grains of NdFeB with magnetic domains
made visible via contrast with a Kerr microscope.
http://en.wikipedia.org/wiki/Magnetic.domain

Carolin Kreisbeck (WIAS Berlin)



Thin ferromagnetic bodies

Q4
Q. T
Thin-film rescaling
~>  work on fix domain ;. " 1
| =

Rescaled energy

1
EM™9[m, h] = / a|Vem|? + ¢(m) dx + 5/ |h|? dx,
RS

1

if < dlvzﬁrrrlr—;h) > =0 inR% (EM8 = +00, otherwise.)
£

Ve :=(V',1/e8s)
V' = (64,8,)
dive := V-, curle := VX

rescaled Maxwell equations

Our goal: Characterization of the [-limit E; > of EM9 as ¢ |, 0, (compare also Gioia &

,
James '97).
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Classical thin-film limits in nonlinear elasticity

Q. =w x (0,¢), w C R? bounded.

u: Q. — RR® deformation. e Q.
Elastic energy (after thin-film rescaling)
18%[u] = [o, W(Veu) dx = [ W(V'ul105u) dx
Le Dret & Raoult '95: The limit problem as € | 0 is purely two-dimensional and
characterized by
I8 [u] = fw Qs (minbeRa W (V'u(x')] b))dx’. x' = (x4, %)

Notice the loss of information on the weak limit of %Bsu.
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Bending moment in membrane theory

Incorporating a bending moment (Cosserat vector) b.

Elastic energy with bending moment

W(V'ulb)dx ifb= 18,u,
I:end [U, b] — Q ( | ) Y3
+00 otherwise.

Bouchitté, Fonseca & Mascarenhas '09:
Characterization of the [-limit [°" of /2*" as & | 0.

Open question: Is [2°™ in general a nonlocal functional?

Our goal: Give an alternative approach resulting from a more abstract theory.

Carolin Kreisbeck (WIAS Berlin)



Dimension reduction in the
A-free framework
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The A-free framework |

Q C RRY bounded Lipschitz domain.
f: R™ — R continuous.

Consider

Flu] = /Qf(u)dx if Au=10inQ,

+o0o otherwise.

We assume that A is a constant-coefficient first-order linear partial differential operator

A=30 A0g | with A A € RIXM,

that fulfills Murat’s constant-rank property, i.e.

’ rank A(£) = const. forall £ # 0.

Examples: A = divand A = curl.
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The A-free framework |l

Applications:
¢ Nonlinear elasticity:
functionals on gradients ~ A =curl
¢ Micromagnetics:

static Maxwell equations ~» A = A™9 where

(7)-(*0,7)

Literature:
Fonseca & Miiller ‘99

Braides, Fonseca & Leoni ‘00

Baia, Chermisi, Matias, Santos ’11

<o
<o
& Fonseca & Krémer '10
<o
<o
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Rescaling and the limit operator A,

For & > 0 we consider the rescaled functional F. : LP(Q¢; R™) — R,

A = /Q1f(u)dx if Acu=0inQ, 0. 91

+00 otherwise,
1
] —

where A, := Z:: AP, + %A(d)ad'
A.u=0
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Rescaling and the limit operator A,

For ¢ > 0 we consider the rescaled functional F. : LP(Q;; R™) — R,

] = /91 (W) dx i Au=0mnQy 91

+00 otherwise,
~ 1
e] —

where A = Y01 AW, + LA 0, A
u=20
A.u=0

The corresponding limit operator for € — 0 is given by

- [A(d)]iad if [A(d)]i £0 =1,
o <{ S [A9) 8, if [AD)]) =0 '

Remark: A, is in general not of constant-rank!

Examples: A =div ~» divou = 9yug.
A =curl ~ CUrlo u= (—83U27 83U1, 61 U — 82U1)T (d = 3)
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Upper and lower bound for the thin-film limit on A-free fields

Theorem 1 [K. & Rindler ’14] arXiv:1105.3848

Let Q4 = w x (0,1) C R be Lipschitz and f be continuous with standard p-growth and
p-coercivity, p € (1 , —|—oo). If A has constant rank such that A, satisfies an extension
property, then:

(Lower bound) If (u:)e C U4, and u € LP(24; R™) with u. — win LP(Q4; R™), then
u € Uy, and

N Q% f(u) dx < lim inf Felug].

(Upper bound) For every u € U 4, there exists a sequence (us)s C U4, suchthatu. — u
in LP(Q24;R™) and

lim sup F-[ue] < / Q f(u) dx.
e—0 Q,

Notice that U4, = {u € LP(Q4; R™) : Acu=0in 4} = LP(Q4; R™) Nkerg, A, and
Up, = {u e P(Q;R™) - Agu=0in 4} = LP(Q4; R™) Nkerg, A,.



Thin-film [ -limit in the A-free framework

Recall that
f(u)dx if Acu =0 in€y,
Folu] = /Q (v) 1 u € LP(Qy; R™).

+00 otherwise,

Corollary 2 [K. & Rindler '14] arXiv:1105.3848

Let the assumptions of Theorem 1 hold. If additionally,

Qaf < QR f (eg., if fis asymptotically Ap-quasiconvex),
then F. SLEN Fo with respect to weak convergence in LP(2;; R™) as ¢ | 0.

Here,
Oaf(u)dx if u=0 in{y,
FO[U] = Q . ( ) AO ! ue Lp(Q1,Rm)

+00 otherwise,
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Proof of Theorem 1: Basic ideas

Key tool: Projection onto .A.-free vector fields with uniformly bounded constants
(constant-rank property) (Fonseca & Miller '99, K. & Rindler '14).

Lower bound: Young measure approach (Fonseca & Miiller '99)
Ingredients: localization by blow-up, decomposition lemma

Upper bound: Explicit construction of a recovery sequence
Ingredients: relaxation theory in A-framework (Braides, Fonseca & Leoni °00)
+ Proposition 5 + diagonalization argument

Proposition 5
For u € U 4, there exists (u:): C U, such that u. — u in LP(24;R™).

Lemma 6 (Convergence of 'symbols’)
ltholds that A, — Ay,  ie. P4_(€) — Py(€) for & € RY.

I\ Notice that Ao(€) # Ao(€) i &g = 0.
~~ explicit construction on plane waves in R?~" x {0}.



Proof of Theorem 1: Discussion

Fourier methods...
< ... allow for intuitive, algebraic arguments in Fourier space.
< ... give insight into the structure of the dimension reduction problem.

Price to pay:

Extension property of Ag-free fields
in order to work on general domains ;.

Assumption (Approximate extension property)
Letw CC Q%" Forevery u € U 4, there exists (u;); C LP(Q%; R™) Nkerpe Ajg such that
u — uin LP(Q4; R™M).

Examples: divy and curly satisfy the extension property.
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Back to the applications
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Elastic thin-films in the curl-free formulation

Recall the classical elastic energy:

1925 [u] = fQ1 W(V.u) dx, u e WHP(Qy; R®).

Within the curl-free framework we define

W(H) dx ifcurle H=0,
I.[H] == < Ja, H e [P(Qy; R3*®).

+0oo otherwise,

Equivalence between the energies /. and /2"

el bl = L[] & H=(V'u[b),]

W(V'ulb)dx itb=10u, e w'P(Q,: R
where BB = Ja ] be Lp(f(21 1IR{s))
+00 otherwise, ’
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Bending of elastic thin-films

Recall the elastic energy with bending moment

/ W(V'ulb)dx ifb= 10, ue w'»(Q;R?)
Q

bend —
Eu, b] = be LP(Q; )

“+00 otherwise,

Corollary 7
If W is asymptotically curly-quasiconvex, the [-limit of /*®"® with respect to weak
convergence in W'P(Qy; R®) x LP(Q4;R?) is

£ u, b] = /Q W(V'u(x") | b(x)) dx.

Proof: Apply Corollary 2 with F. = I, f = W and A = curl and use
curlg H=0 < H(x) = (V'u(x')|b(x)).

Remark: This is in agreement with the result of Bouchitté, Fonseca & Mascarenhas "09.
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Thin-film limit in micromagnetics

Theorem 8 [K. '11] Quart. Appl. Math. (2013)

The I-limit of E™9 for € |, 0 regarding weak convergence in W'?(€y; R®) x L?(R%; R®)
exists and is finite with ’
Ey®[m, h] = / a|V'mf + o(m) + Emg dx’,
w
—_—————

effective anisotropy energy

it me W'?(w;S?) and h = —(0,0, m3) € L?(R? R®).

Interpretation:
o Ey9is purely two-dimensional (independence of x3) .
© Eyis local (Maxwell equations disappeared).
¢ Magnetizations pointing out of plane are unfavorable.

& Minimizers of £y are uniformly magnetized (single domain).

Remark: Ey® coincides with limit energy of Gioia & James '97.
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Outlook
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The question of locality

Open problem: Is the ["-limit F, of F. in general a local functional?

Conjecture (Bouchitté, Fonseca & Mascarenhas '09): The functional /ge"d may be nonlocal.

Heterogeneous thin films

For o > 0 we define

Fo[u] Jo f(;—;, u(x))dx uela, =LP(Q;R™) Nkerg, A.,
ul = 1
c +00 otherwise.

Proposition 9 [K. & Kromer '14]
Let Qy = (0,1) p > 1, A be a constant-rank operator, and o < 1.

Then there exists an integrand f that is convex in the second variable such that
Fg* :=T-lim FY is nonlocal.
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Thank you!




A-quasiconvexity and asymptotic Ay-quasiconvexity

T is the d-dimensional torus, which results from glueing opposite edges of Q7 := (0, 1)".

The A-quasiconvex envelope Q 4f is defined as
Qaf(v) = inf{ [, f(v+ w(x)) dx : w € C=(T% R™), Aw = 0in T?, [, w dx = 0}.

Definition: A function f : R™ — R is A-quasiconvex, if
f(v) < [ (v + w(x)) dx

forallv € R™and all w € C>°(T?, R™) with Aw = 0in T and [, wdx = 0.

Examples:
A = div, then A-quasiconvexity is convexity ~ Qg f = " = Oy, f = O f.
A = curl, then A-quasiconvexity is quasiconvexity ~» Qqf = Of, O, f < Qg f.
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A-quasiconvexity and asymptotic Ay-quasiconvexity

T is the d-dimensional torus, which results from glueing opposite edges of Q% := (0, 1)?.

The A-quasiconvex envelope Q 4f is defined as
Qaf(v) = inf{ [, f(v+ w(x)) dx : w € C=(T% R™), Aw = 0in T?, [, w dx = 0}. ‘

Further, we define Q% f(v) = lim, oo Q') f(v) for v € R™ with

Q' f(v) = inf{ [ f(v + w(x)) dx : w € C=(T% R™),
77HAOW||W*"‘(']I“’;]R’) S 1’de WdX = 0},

and say that f is asymptotically Ay-quasiconvex if jS{:)f =f.

Examples:
A = div, then A-quasiconvexity is convexity ~ Qg f = " = Qyy, f = O f.
A = curl, then A-quasiconvexity is quasiconvexity ~» Qe,nf = QF, O f < Qeur, f.
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Key tool: Projection onto .A-free fields

Lemma 3 [Fonseca & Muller 99]
Let p € (1,00) and .A a constant-rank operator. Then there exists a bounded projection
operator P4 : LP(T? R™) — LP(T R™) such that for all u € LP(T9; R™):

& Pyuis A-freein TY,
O |[Paullp(rermy < Cllullie(rerny.
O ||[Pau — ullp(re;rmy < C || Aullw—1o(re;r1),

with a constant C > 0.

Proof: Based on Fourier methods. Define

Pa(u)(x) = 8(0) + X¢eze (o Pal€) 8(E) Q2mixE.

where P4 (€) is the orthogonal projection onto ker A(&) in Fourier space.

Important ingredients: constant-rank property
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Key tool: Projection onto .A.-free fields

Lemma 3 [Fonseca & Miiller 99, K. & Rindler '14]
Let p € (1, 00) and A a constant-rank operator. Then there exists a family of bounded
projection operators P 4_ : LP(T9 R™) — LP(T9 R™) such that for all u € LP(T9; R™):

& Py uis A.-freein TC,
O [Pa.ullipererny < Cllullipre ey,
O | Pa.u— ullpaorny < CllAcullw-10(1er1)s

with a uniform constant C > 0.

Proof: Based on Fourier methods. Define

Pa.(u)(x) = 8(0) + Xeezan o P (€) B(E) ™,

where P 4_(£) is the orthogonal projection onto ker A (&) in Fourier space.

Important ingredients: constant-rank property
+ scaling argument for Fourier multipliers on R¢.
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Necessity of constant-rank property for projection results

Counterexample [Kromer ’12]:

Let d = m = 2,/ = 1 and consider the operator divy : L?(T? R?) — W~ "2(T?),
diVO u= 82u2.

The orthogonal projection onto divy-free fields is given by

Pawot(x) = tn(x)er + ([, va(x1, 5) ds)e.

For the sequence (u;); defined by

u(x) = sin(2mjxr) sin(2mx)es, X € @,

one finds that
o || divg uj||W—1,2(11~2) — 0 forj — oo,

since divg u; = 27 sin(27jx; ) cos(2mxz) — 0 in L2(T?).

1.
BUt; (o4 ||77divou,- — Uj”Lz('ﬂ*z;Rz) = ||Uj||L2(T2;R2) = fO Sln2(27TS) ds = % > 0.



Proof of Theorem 1: Lower bound

Method: Young measure approach (Fonseca & Miiller 99)

Localization by blow-up
Q Q°

o (V)e C LP(Q%R™)
bounded

o fou V& dy = u(x)

o Avf=0in@°

o (ue)e C LP(Q4;R7)

O U — uin
Lp(Q1;Rm)

O Acus = 0in 4

YM
O Us — (VX)XEQ1

o V& (1) eon

liminfeyo fo f(ue) dx > [o (f,vx) dx () = limesso [ F(V2) dy

Carolin Kreisbeck (WIAS Berlin)



Proof of Theorem 1: Lower bound

Method: Young measure approach (Fonseca & Miiller 99)

Localization by blow-up
Q Q°

o (2)e C LP(Q%R™)
p-equiintegrable

o (ue)e C LP(Q4;R7)

O U — uin

LP(Q1; R™) O [fou 2F dy = u(x)
o Acue = 0in o Aozl — 0in WH(TY; R™)
YM

O U — (VX)XEQ1 L3 Z; ﬂ) (VX),VEQ"

liminfe o [y, f(ue) dx > [, (£, ) dx ’ (f,v) = lime—so [y 7(22) dy > Qjoof(u(x))‘

Lemma 4 (Local decomposition lemma)

If (vo)e C LP(QYR™) with v. — vin LP(Q%; R™) and A.v. = 0in Q% then there is a

p-equiintegrable sequence (z.). C L°(Q%; R™) such that zz — v. — 0in L'(Q%; R™),
Jpvedy = [pzedy and  Apz. = 0in WHI(TYR™).
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Proof of Theorem 1: Upper bound

Method: Explicit construction of a recovery sequence
Ingredients: relaxation theory in A-framework (Braides, Fonseca & Leoni *00)
+ Proposition 5 + diagonalization argument

Proposition 5
For u € U 4, there exists (u:): C U, such that u. — u in LP(24;R™).
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Proof of Theorem 1: Upper bound

Method: Explicit construction of a recovery sequence
Ingredients: relaxation theory in A-framework (Braides, Fonseca & Leoni *00)
+ Proposition 5 + diagonalization argument

Proposition 5
For u € U 4, there exists (u:)e C U, such that u. — u in LP(Q4;R™).

Lemma 6 (Convergence of 'symbols’)
It holds that A, — Ay, i.e. Pa_(£) — B4, () for € € RY.
I\ Notice that Ko(€) # Ao(€) it €4 = 0.

If 4 # 0, then r = rank A, (£) = rank Ay(€) by the constant-rank property.



Proof of Theorem 1: Upper bound

Method: Explicit construction of a recovery sequence
Ingredients: relaxation theory in A-framework (Braides, Fonseca & Leoni *00)
+ Proposition 5 + diagonalization argument

Proposition 5
For u € U 4, there exists (u:)e C U, such that u. — u in LP(4;R™).

We split u = ul") 4 4@:

00(1)(5)_{2(5) HESINRY 0

0 if&#0
a(g) f€a=0

o Ao(E)aM(¢) = oforall € € RY o u®(x) = u®(x) for x € Q7

oul = P uh) o uéz)(x) = u®(x') — exg(ANT A LB (x))

Lemma 6 (Convergence of 'symbols’)
It holds that A, — Ay, i.e. Pa_(£) — B4, (€) for € € RY.
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Proof of Theorem 3

Recall that 1
E8[m, 1] :/ o [Vomf? + o(m) dx + 5/ Ih[? dx,
R3

if (m, h) € kergs AT with [m| =1 (EM™9 = 400, otherwise),

and

il = fm f(u) dx ifu € Uy, = kerg, A.,
00 otherwise.

Specific characteristics of £ (in comparison to F):

o Q=R v ~~ replace Fourier series by Fourier transforms

<& non-convex constraint
¢ integrand with derivatives of m
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Proof of Theorem 3: Upper bound

Let (m, h) € kergs Ag° with |m| = 1 and d3m = 0in €.
In analogy to Proposition 5 there exists a sequence (7, ;) C kergs Ag‘ag with

(i, By) = (m,h)  in L3(R% R®) x L2(R%; R®) asj — 0.

Problem: Regularity and non-convex constraint NOT satisfied!

Set

mj =m

- - forall j € N.
hj = CU”si (hj —m-+ mj) J

Idea: Keep magnetization fixed and adjust the induced field!

The sequence (m;, h;); is a recovery sequence.
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