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Introduction

Epitaxially strained crystalline films are obtained by deposing thin
layers on a thick substrate

Deposed atoms

Substrate

Example : In-GaAs/GaAs or SiGe/Si.



Governing mechanism

There is a mismatch between the lattice parameters of the two
crystals

The deposit layer is strained and the atoms try to rearrange for
releasing elastic energy but this migration is also energetically
expensive

=⇒ interaction between bulk and surface energy.



Numerical and experimental observations

Existence of several regimes depending on the volume of the thin
layer and of the mismatch

• For small volumes, the flat configuration is favored

• Above a certain threshold, the flat configuration is not stable
anymore and the film develops corrugations

• For higher values of the volume/mismatch, there is formation
of isolated islands

Goal: Understand these different regimes.



Surface roughening in SiGe/Si, images from Gao, Nix, Surface
roughening of heteroepitaxial thin films, 1999.



Formation of islands, images from Gray, Hull and Floro Formation
of one-dimensional surface grooves from pit instabilities in

annealed SiGe/Si(100) epitaxial films, 2004.



Experimental results

Example of cusps, images from Chen, Jesson, Pennycook,
Thundat, and Warmack, Cuspidal pit formation during the growth
of SixGe1-x strained films, 1995



Numerical simulations

Numerical simulations from Bonnetier and Chambolle, Computing
the Equilibrium Configuration of Epitaxially Strained Crystalline
Films, 2002.

See also the numerical simulations of Smereka and of the
University of Cambridge, DoITPoMS,
http://www.doitpoms.ac.uk/tlplib/epitaxial-growth/index.php



Applications

These epitaxially grown thin films are used for

• Optical and optoelectric devices (quantum dot laser).

• Semiconductors.

• Information storage.

• Nanotechnology.



The Mathematical Model

The film is taken to be the subgraph Ωh of a function
h : [0, 1] → R+

h(x)

Ωh

u(x , y) = e0(x , y)

The substrate is considered as rigid hence in the substrate, the
deformation is equal to e0(x , y) where e0 is the mismatch.



The energy

Let W : R4 → R+ be the stored elastic energy then we consider
the variational problem:

Fd ,e0(u, h) :=

∫

Ωh

W (∇u) +

∫ 1

0

√
1 + |h′|2

under the conditions that

u(x , 0) = e0(x , 0) and

∫ 1

0
h = d

Remark: most of the works consider energies W depending only on
the symmetric part of the gradient.



Contributions of each term in the energy

• Due to the mismatch, there are no stress free configurations.

• In order to release elastic energy, the bulk term favors creation
of singularities.

• On the other hand, the surface term tends to avoid too many
oscillations.



Regularity results (in the geometrically linear setting)

cusp cut

Theorem [Chambolle-Larsen 03, Fonseca-Fusco-Leoni-Morini
07]

The profile h is regular out of a finite number of cusps and cuts.
Moreover the film satisfies the zero angle condition.



Regularity results continued

Theorem [Fusco-Morini 12]

• For small mismatch, the flat configuration is minimizing (no
matter how big is d).

• For greater mismatch, the following holds:

1. for d ≤ d0, the flat configuration is minimizing
2. for d ≤ d1 the flat configuration is locally minimizing
3. for d ≤ d2, the flat configuration is not locally

minimizing but every minimizer is smooth



Other results in the litterature

• Physical and engineering: Spencer-Meiron 94, Spencer-Tersoff
10, Gao-Nix 99.

• Regularity, relaxation and approximation:
Bonnetier-Chambolle 02, Chambolle-Larsen 03,
Fonseca-Fusco-Leoni-Morini 07, Chambolle-Solci 07,
Fusco-Morini 12, Bonacini 14.

• Time evolution: Fonseca-Fusco-Leoni-Morini 12, Piovano 12.



Other results in the litterature

• Physical and engineering: Spencer-Meiron 94, Spencer-Tersoff
10, Gao-Nix 99.

• Regularity, relaxation and approximation:
Bonnetier-Chambolle 02, Chambolle-Larsen 03,
Fonseca-Fusco-Leoni-Morini 07, Chambolle-Solci 07,
Fusco-Morini 12, Bonacini 14.

• Time evolution: Fonseca-Fusco-Leoni-Morini 12, Piovano 12.

No rigourous result on the formation of the islands!



The main result
We will assume that

Hypothesis

(H1) W ≥ 0

(H2) there exists C > 0 and p > 1 such that

C (|A|p + 1) ≥ W (A) ≥ 1

C
(|A|p − 1) ∀A ∈ R2×2.

Theorem

Under these assumptions, for every e0 > 0 and d > 0 there holds

min
u,h

Fe0,d(u, h) ≃ max(1, d , e
p/3
0 d2/3).

Remark:

• Thanks to (H2), it is enough considering W (∇u) = |∇u|p.
• Works also in the geometrically linear setting.



Heuristic explanation of the scaling

We consider for simplicity here p = 2 so that

Fe0,d(u, h) =

∫

Ωh

|∇u|2 +
∫ 1

0

√
1 + |h′|2

If Ωh ∩ {y = 0} = [a, a+ ℓ] then since |Ωh| = d ,

∫ 1

0

√
1 + |h′|2 ≥ d

ℓ
.

On the other hand

min
u(x ,0)=e0(x ,0)

∫

Ωh

|∇u|2 ≃ e20 |u|2H1/2(a,a+ℓ)

≃ e20ℓ
2

ℓ



Putting these together we find that

Fe0,d(u, h) & e20ℓ
2 +

d

ℓ

Optimizing in ℓ, we find that ℓmin ≃ min(1,
(

d
e20

)1/3
). So that two

regimes appear:

• If
(

d
e20

)1/3
≤ 1, we have ℓmin =

(
d
e20

)1/3
and

minFe0,d ≃ e
2/3
0 d2/3.

• If
(

d
e20

)1/3
≥ 1, the flat configuration is favored and

minFe0,d ≃ e20 + d ≃ d .

Difficulty:

when h(x) ≪ 1, the constant in

the trace inequality degenerate i.e.

min
u(x ,0)=e0(x ,0)

∫

Ωh

|∇u|2 � e20 |u|2H1/2(a,a+ℓ)



Reduced models
In order to study the asymptotic behavior of the energy, we rescale
the domains and set

• h̃ := h/d

• Ω
h̃
:= {(x , y) : (x , dy) ∈ Ωh}

• ũ (x , y) = u (x , dy)

Dropping the tildes, the energy now reads

Fd ,e0 (u, h) = d

[∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy +

∫ 1

0

√
1

d2
+ |h′|2dx

]

for (u, h) such that

∫ 1

0
hdx = 1, and u ∈ W 1,p (Ωh) with

u (x , 0) = e0 (x , 0).



Γ-convergence

Definition

We say that a sequence of functionals Fn Γ-converges to F if

∀un with supFn(un) < +∞, ∃u such that un → u (up to a
subsequence) and

lim inf Fn(un) ≥ F (u)

∀u, ∃un → u with

lim supFn(un) ≤ F (u)



The surface dominant regime Fd ,e0 ≃ d

We divide the energy by d and obtain the rescaled energy

Fd (u, h) :=

∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy +

∫ 1

0

√
1

d2
+ |h′|2dx .

In this regime, the surface energy is the dominating term, and the
limit functional is given by

F̄ (h) :=

∫ 1

0

∣∣h′
∣∣+ 2H1 (Γcuts) .

The minimizer of F̄ is the flat configuration h ≡ 1



The elastic dominant regime, Fd ,e0 ≃ e
p/3
0 d

2/3

The relevant parameter is η :=
(

d
e
p
0

)1/3
→ 0, so that the energy

scales like d
η . We thus consider the normalized energy:

Fη (u, h) := η

[∫

Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dxdy +

∫ 1

0

√
1

d2
+ |h′|2dx

]
.

Notice that in this case, no bound on the total variation of h is
available and we expect that the configuration will get more and
more irregular.



The convergence result

Let µ := h dx and

Fη (µ) := min
u(x ,0)=(x ,0)

Fη(u, h).

Theorem

The following Γ-convergence holds :

Γ− lim
η→0

Fη = G

where

G (µ) =

{
3C

1/3
W

∑+∞

i=1 d
2/3
i if µ =

∑+∞

i=1 diδci
∑+∞

i=1 di = 1

+∞ elsewhere.



Remark: The minimizer of the limit functional, i.e.

min

{
+∞∑

i=1

d
2/3
i :

+∞∑

i=1

di = 1

}

is given by a single Dirac mass, i.e. d1 = 1 and di = 0 for i > 1.



Few issues

(i) This analysis seems to heavily relies on the fact that we are on
a bounded domain.

(ii) One would like to understand also the asymptotic shape of
the islands.



Few issues

(i) This analysis seems to heavily relies on the fact that we are on
a bounded domain.

(ii) One would like to understand also the asymptotic shape of
the islands.

To understand these issues we study the functional

F (e0, d) = inf

{∫

Ωh

|∇u|2 +

∫

R

√
1 + |h′|2 − 1 :

∫

R
h = d , u(x , 0) = e0x

}
.



The small slope approximation

We first study the small slope approximation
√
1 + x2 ≈ 1 + x2

2

F s(e0, d) = inf

{∫

Ωh

|∇u|2 +

∫

R
|h′|2 :
∫

R
h = d , u(x , 0) = e0x

}
.



Theorem

We have the following scaling law

F s(e0, d) ≃ min
{
e20d , d

4/5e
6/5
0

}
.

Remark: for e40d & 1, the typical island is of height e
2/5
0 d3/5 and

of width
(

d
e0

)2/5
.



Existence vs nonexistence of minimizers

Theorem

There exists V0 such that:

(i) if e40d < V0 then F s(e0, d) = e20d and there exists no
minimizer of F s(e0, d),

(ii) if e40d > V0 then F s(e0, d) < e20d and there exists a (smooth)
minimizer of F s(e0, d) which has connected and compact
support.

Moreover, for e40d = V0 there also exists a minimizer.



The asymptotic shape
Using Γ-convergence techniques, we obtain

Theorem

Let V = e40d and let hV be a minimizer of F s(e0, d) and let

h̃V (x) = e
−2/5
0 d−3/5hV

((
d
e0

)2/5
x

)
then

lim
V→+∞

h̃V =
3

2
ℓ−3

(
ℓ2 − x2

)
x ∈ [−ℓ, ℓ]

where ℓ :=
(

9
16CW

)1/5
.

−ℓ ℓ



The large slope approximation

We can similarly investigate the large slope approximation√
1 + x2 ≈ |x |

F L(e0, d) = inf

{∫

Ωh

|∇u|2 +

∫

R
|h′| :
∫

R
h = d , u(x , 0) = e0x

}
.



Theorem

We have the following scaling law

F L(e0, d) ≃ min
{
e20d , d

2/3e
2/3
0

}
.

Remark: for e40d & 1, the typical island is of height e
2/3
0 d2/3 and

of width
(

d
e20

)1/3
as in the compact case.



Existence vs nonexistence of minimizers

In the large slope approximation we can only prove the weaker
statement

Theorem

(i) If F L(e0, d) < e20d and there exists a minimizer of F L(e0, d)
which has connected and compact support.

(ii)

lim
e40d→0

F L(e0, d)

e20d
= 1



The asymptotic shape
Using Γ-convergence techniques, we obtain

Theorem

Let V = e40d and let hV be a minimizer of F L(e0, d) and let

h̃V (x) = (e0d)
−2/3hV

((
d
e20

)1/3
x

)
then

lim
V→+∞

h̃V =
1

ℓ
χ[0,ℓ]

where ℓ :=
(

1
2CW

)1/3
.

ℓ



Walfrido ’Morning in the Tropic’

Thank you for your attention!
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