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A variational model in epitaxial films theory

(BoNNETIER & CHAMBOLLE 2002, Fonseca, Fusco, LEont & Morint 2007, Fusco & Morint 2012)

Class X of admissible pairs (h,u):

y € R
@ h:Q=1(0,1)""1 — (0,+0c0) T un
Lipschitz, 1-periodic (free profile)
e u € Wh*(Qy; R"), periodic
(deformation of the film) Qn
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A variational model in epitaxial films theory

(BoNNETIER & CHAMBOLLE 2002, Fonseca, Fusco, LEont & Morint 2007, Fusco & Morint 2012)

Class X of admissible pairs (h,u):

y € R
@ h:Q=1(0,1)""1 — (0,+0c0) T un
Lipschitz, 1-periodic (free profile)
e u € Wh*(Qy; R"), periodic
(deformation of the film) Qn

@ u(x,0) = wo(x,0) (typical choice: 0 /‘11, c Rrr-1
wo(x,y) = (6(1)£E1,63I270)) ://///// '
Total energy of the system:
F(hyu):= [ W(Vu)dz+ [ ¥(vp)dH" !
Qp Tn
o W : M7 — [0,+00) of class C?,
@ ¢ :R" — [0, +00) of class C3, positively 1-homogeneous,
D23 (v)[w, w] > colwl|? for all v € S"~!, for all wlv



Critical pair

A pair (h,u) € X is a (regular) critical pair for F' if
o he C*(R" 1), ue C%ﬁ#;R"),

@ u solves

We(Vu) : Vw =0
Qp,

for every w € V() :={w € W;’M(Qh;Rn) cw(z,0) =0},
or equivalently
div [We(Vu)] =0 in QF
We(Vu)[vp]) =0 on I'f

o W(Vu)+ HY = const on Iy, where HY = div(V1) o 1)



Implicit function theorem

Assume that (h,u) is a critical pair satisfying
/ Wee(Vu)Vw : Vo > COH7~U||%{1(Q,1;W) for every w € V()
Qh

(the elastic second variation is uniformly positive at w).
Then by the Implicit Function Theorem we can prove:

Proposition

There exist a neighbourhood U of h in W2P and a map
g €U uy € WHP(Qy;R™) such that:

(i) wg is a critical point for the elastic energy in §Qg,
(ii) wp = u;

(iii) the map g — ug 0 D, is of class C* from W;’p(Q) to W2P(Qp; R™).

Moreover, for every w € V() with 0 < [|[Vw||s < 0

/Qg W(Vug) < /Qg W(Vuy + Vw).



Second var

Let (h,u) satisfy the previous assumptions.

° Fix ¢ € C%(Q) with qub =0 and set hy := h + to.

@ For t small we have h; € U and we can consider a critical point for the
elastic energy u; in €y, , constructed in the previous proposition.

@ We define the second variation of F' at (h,u) along the direction ¢ to be

d2
@F(ht,utﬂt:o-



Second variation

Let (h,u) satisfy the previous assumptions.

° Fix ¢ € C%(Q) with qub =0 and set hy := h + to.

@ For t small we have h; € U and we can consider a critical point for the
elastic energy u; in €y, , constructed in the previous proposition.

@ We define the second variation of F' at (h,u) along the direction ¢ to be
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Quadratic form associated with the second variation at a critical pair (h,u):
O F(hu)ly] = — [ WeeVa)Voy s Vo, st [ (D" 00)[Vi, o, Vi, g d !
Qp Tn

+/ (8, (W o Vu) — tr(BYB))p” dH" ",
Ty

defined for ¢ € Hy(Ts), [, ¢ = 0.



Local minimality criterion

Theorem (Bonacini, Adv. Calc. Var. 2014)

Let n = 2,3. Assume that (h,u) € X is a critical pair, the elastic second
variation is uniformly positive:

Wee(Vu)Vw : Vu > co||w||%,1(9h;Rn) for every w € V(Qp,),
Qp

and (h,u) is strictly stable (9*F (h,u)[¢] > 0 for every ¢ # 0).

Then (h,u) is a local minimizer for F.

We say that (h,u) is a local minimizer if there exists § > 0 such that
F(h,u) < F(g,v)
for every (g,v) € X with
® [lg = hlloc <6, [2] = [2n],

o ||V'U - VUHLOO(Q/;MTL) < 4.



The linearly elastic case

Theorem (Bonacini, Adv. Calc. Var. 2014)

Let n = 2,3, and assume that the elastic energy density has the form

£+§T>,<£+£T

W@%=%C< >, £eM”,

2 2

for some constant fourth-order tensor C such that

CE: € > colé]?  for every € € M2 co > 0.

Sym’

If (h,u) is a strictly stable critical pair, then (h,u) is an isolated local
minimizer for F in the following sense: for every M > ||Vu|l there
exists 0 = 6(M) > 0 such that

F(h,u) < F(g,v)
for every (g,v) € X with 0 < ||g — hlloo <6, Q| =[], and
v € Lipy(Qq; R™).




Comments on the proof

Two Steps strategy (Fusco & Morint 2012. Acersl, Fusco & Morint 2013)

o Local W?P-minimality

o minimality with respect to competitors (g,v) with ||g — h|lwz.»
sufficiently small

e holds in dimensions n = 2,3

e requires to control the trace of the gradient of W (Vu) on I'y, in a
proper Sobolev space of negative fractional order

e careful new estimates for the elliptic system associated with the first
variation of the elastic energy
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Two Steps strategy (Fusco & Morint 2012. Acersl, Fusco & Morint 2013)

o Local W?P-minimality

o minimality with respect to competitors (g,v) with ||g — h|lwz.»
sufficiently small

e holds in dimensions n = 2,3

e requires to control the trace of the gradient of W (Vu) on I'y, in a
proper Sobolev space of negative fractional order

e careful new estimates for the elliptic system associated with the first
variation of the elastic energy

o Local W?%P-minimality implies local minimality (as before)
e contradiction argument
e the L*°-bound on the deformation gradient allows to regard the
elastic energy as a volume perturbation of the surface energy
e appeal to the regularity theory for quasi-minimizers of the area
functional



Application: stability of the flat configuration

Asaro-Grinfeld-Tiller instability: instability of the flat layer above a
critical value of the thickness of the film

Flat configuration with volume d > 0:
e Reference configuration: Q; = @ x (0,d) (profile h(z) = d)
o Affine critical point for the elastic energy: vo(z) = M[z], M € M’}

There exists dg > 0 such that for every d < dy

0%F(d, vo)[p] > 0 for every ¢ # 0.

e The result is proved by Fusco & Morini (2012) in two dimension
and linearized elasticity (here the local minimality threshold of the
flat configuration is determined analytically)



The crystalline case

e For crystalline anisotropies, the AGT instability is suppressed

Assume that 1. : R™ — [0, +00) satisfies:
@ 1. is convex and positively 1-homogeneous,
o the associated Wulff shape Wy, contains a neighbourhood of the origin,

@ JWy,_ contains a horizontal facet:

{(m,y) ER"IXR:|z| <a, y:b} C OWy, .



The crystalline case

e For crystalline anisotropies, the AGT instability is suppressed

Assume that 1. : R™ — [0, +00) satisfies:
@ 1. is convex and positively 1-homogeneous,
o the associated Wulff shape Wy, contains a neighbourhood of the origin,

@ JWy,_ contains a horizontal facet:

{(z,y) eR" ' xR:|z| <a, y=>b} COW,, .

For every d > 0 the flat configuration (d,vo) is a local minimizer for the
functional corresponding to the surface energy density ..




crystalline case: sketch of the proof

o Let Yo(x,y) := alz| + bly| the anisotropy whose Wullf shape is the
cylinder C := {(z,y) : |z] < a, |y| < b}, and let F be the associated
functional.

@ We have o < ., ¥c(0,1) = 1).(0,1) = b.

@ For € > 0, let F. be the functional associated with the “regular”
anisotropy ¥.(x,y) := a\/e2y% + |z|? + (b — ae)ly|.

Notice that ¥, ¢ as e — 0.

@ We have, for ¢ < ¢g,

O F.(dw)lel =~ [

Qx(0,d)
2
> Cllellzn ) -

Then for every competitor (g, v) sufficiently close to (d, vg)

Wee(Voo) Vo, : Vo, dz + g/ V|2 dHN !
Q

F.(d,v) = / W (Vo) dz + ¢c(0,1) = Fe(d, vo)
Qx(0,d)

= Fy(d,v0) < Fey(g,v) < Fe(g,v) < Fe(g,v).



Application: Liapunov stability of the flat configuration

(Fonseca, Fusco, LEONI & MORINI 2014)

e Evolution of anisotropic epitaxially strained films via surface
diffusion with curvature regularization, in three dimension

e Linear elastic energy density W : M3 — [0, +-00),

Sym

W(A) = %CA : A, with C positive definite fourth order tensor.

Evolution equation: find h(-,t) solution to

1 0h _ 1 _
o = A |+ wEW) - s(ArM.,t)(\HV’ )~ La + e 5 |
with J = /14 [Vh|?, u(-,t) elastic equilibrium in Q4. ;).

e Short time existence of a variational solution of the geometric
evolution equation starting from an initial datum hg € Wjﬁ’p (@)



Application: Liapunov stability of the flat configuration

Theorem (Liapunov stability)

Assume that
o the flat configuration satisfies 0*F(d,vo)[p] > 0 for every ¢, or
@ . 15 a crystalline anisotropy.

Then the flat configuration (d,vo) is Liapunov stable: for every o > 0
there exists §(o) > 0 such that if ||ho — d||y2» < §(0) then every
variational solution with initial datum hg exists for all times and
|h(-,t) — dllyy2p < o for every t > 0.
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Theorem (Liapunov stability)

Assume that
o the flat configuration satisfies 0*F(d,vo)[p] > 0 for every ¢, or
@ . 15 a crystalline anisotropy.

Then the flat configuration (d,vo) is Liapunov stable: for every o > 0
there exists (o) > 0 such that if ||ho — d||y2» < 6(0) then every
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Theorem (Asymptotic stability)

Assume that 02 F(d,vo)[p] > 0 for every ¢ # 0.

Then the flat configuration (d,vg) is asymptotically stable: there exists
d > 0 such that if ||ho — d||y2» < 0(0), then every variational solution
with initial datum hg exists for all times and |h(-,t) — d||y2» — 0.




Thank you for your attention!



