Stability of equilibrium configurations for elastic films in two and three dimensions

Marco Bonacini

Institute for Applied Mathematics - Heidelberg University

Trends in Non-Linear Analysis 2014 August 1, 2014 - Instituto Superior Técnico, Lisboa

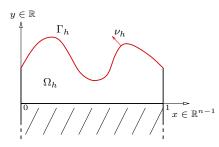
うして ふゆう ふほう ふほう ふしつ

A variational model in epitaxial films theory

(Bonnetier & Chambolle 2002, Fonseca, Fusco, Leoni & Morini 2007, Fusco & Morini 2012)

Class \mathcal{X} of admissible pairs (h, u):

- $h: Q = (0, 1)^{n-1} \rightarrow (0, +\infty)$ Lipschitz, 1-periodic (free profile)
- $u \in W^{1,\infty}(\Omega_h; \mathbb{R}^n)$, periodic (deformation of the film)
- $u(x,0) = w_0(x,0)$ (typical choice: $w_0(x,y) = (e_0^1 x_1, e_0^2 x_2, 0))$

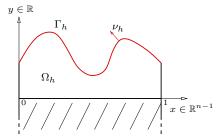


A variational model in epitaxial films theory

(Bonnetier & Chambolle 2002, Fonseca, Fusco, Leoni & Morini 2007, Fusco & Morini 2012)

Class \mathcal{X} of admissible pairs (h, u):

- $h: Q = (0, 1)^{n-1} \rightarrow (0, +\infty)$ Lipschitz, 1-periodic (free profile)
- $u \in W^{1,\infty}(\Omega_h; \mathbb{R}^n)$, periodic (deformation of the film)
- $u(x,0) = w_0(x,0)$ (typical choice: $w_0(x,y) = (e_0^1 x_1, e_0^2 x_2, 0))$



Total energy of the system:

$$F(h,u) := \int_{\Omega_h} W(\nabla u) \, \mathrm{d}z + \int_{\Gamma_h} \psi(\nu_h) \, \mathrm{d}\mathcal{H}^{n-1}$$

• $W: \mathbb{M}^n_+ \to [0, +\infty)$ of class C^3 ,

• $\psi : \mathbb{R}^n \to [0, +\infty)$ of class C^3 , positively 1-homogeneous, $D^2\psi(v)[w,w] > c_0|w|^2$ for all $v \in \mathbb{S}^{n-1}$, for all $w \perp v$ A pair $(h, u) \in \mathcal{X}$ is a (regular) critical pair for F if

•
$$h \in C^2(\mathbb{R}^{n-1}), u \in C^2(\overline{\Omega}_h^{\#}; \mathbb{R}^n),$$

• *u* solves

$$\int_{\Omega_h} W_\xi(\nabla u): \nabla w = 0$$

for every $w \in \mathcal{V}(\Omega_h) := \{ w \in W^{1,\infty}_{\#}(\Omega_h; \mathbb{R}^n) : w(x,0) = 0 \},$ or equivalently

$$\begin{cases} \operatorname{div} \left[W_{\xi}(\nabla u) \right] = 0 & \text{ in } \Omega_h^{\#} \\ W_{\xi}(\nabla u)[\nu_h] = 0 & \text{ on } \Gamma_h^{\#} \end{cases}$$

うして ふゆう ふほう ふほう ふしつ

• $W(\nabla u) + H^{\psi} = \text{const on } \Gamma_h$, where $H^{\psi} = \text{div}(\nabla \psi \circ \nu_h)$

Implicit function theorem

Assume that (h, u) is a critical pair satisfying

$$\int_{\Omega_h} W_{\xi\xi}(\nabla u) \nabla w : \nabla w \ge c_0 \|w\|_{H^1(\Omega_h;\mathbb{R}^n)}^2 \quad \text{for every } w \in \mathcal{V}(\Omega_h)$$

(the elastic second variation is uniformly positive at u).

Then by the Implicit Function Theorem we can prove:

Proposition

There exist a neighbourhood \mathcal{U} of h in $W^{2,p}$ and a map $g \in \mathcal{U} \mapsto u_g \in W^{2,p}(\Omega_g; \mathbb{R}^n)$ such that:

(i) u_g is a critical point for the elastic energy in Ω_g ,

(ii)
$$u_h = u;$$

(iii) the map $g \mapsto u_g \circ \Phi_g$ is of class C^1 from $W^{2,p}_{\#}(Q)$ to $W^{2,p}(\Omega_h; \mathbb{R}^n)$.

Moreover, for every $w \in \mathcal{V}(\Omega_g)$ with $0 < \|\nabla w\|_{\infty} < \delta$

$$\int_{\Omega_g} W(\nabla u_g) < \int_{\Omega_g} W(\nabla u_g + \nabla w) \, .$$

Second variation

Let (h, u) satisfy the previous assumptions.

- Fix $\phi \in C^2_{\#}(Q)$ with $\int_Q \phi = 0$ and set $h_t := h + t\phi$.
- For t small we have $h_t \in \mathcal{U}$ and we can consider a critical point for the elastic energy u_t in Ω_{h_t} , constructed in the previous proposition.
- We define the second variation of F at (h, u) along the direction ϕ to be

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}F(h_t, u_t)|_{t=0}.$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Let (h, u) satisfy the previous assumptions.

- Fix $\phi \in C^2_{\#}(Q)$ with $\int_Q \phi = 0$ and set $h_t := h + t\phi$.
- For t small we have $h_t \in \mathcal{U}$ and we can consider a critical point for the elastic energy u_t in Ω_{h_t} , constructed in the previous proposition.
- We define the second variation of F at (h, u) along the direction ϕ to be

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}F(h_t, u_t)|_{t=0}.$$

Quadratic form associated with the second variation at a critical pair (h, u):

$$\partial^{2} F(h, u)[\varphi] := -\int_{\Omega_{h}} W_{\xi\xi}(\nabla u) \nabla v_{\varphi} : \nabla v_{\varphi} \, \mathrm{d}z + \int_{\Gamma_{h}} (D^{2}\psi \circ \nu) [\nabla_{\Gamma_{h}}\varphi, \nabla_{\Gamma_{h}}\varphi] \, \mathrm{d}\mathcal{H}^{n-1} \\ + \int_{\Gamma_{h}} (\partial_{\nu} (W \circ \nabla u) - \mathrm{tr}(\mathbf{B}^{\psi}\mathbf{B})) \varphi^{2} \, \mathrm{d}\mathcal{H}^{n-1},$$

defined for $\varphi \in H^1_{\#}(\Gamma_h)$, $\int_{\Gamma_h} \varphi = 0$.

Theorem (Bonacini, Adv. Calc. Var. 2014)

Let n = 2, 3. Assume that $(h, u) \in \mathcal{X}$ is a critical pair, the elastic second variation is uniformly positive:

$$\int_{\Omega_h} W_{\xi\xi}(\nabla u) \nabla w : \nabla w \ge c_0 \|w\|_{H^1(\Omega_h;\mathbb{R}^n)}^2 \quad \text{for every } w \in \mathcal{V}(\Omega_h) \,,$$

and (h, u) is strictly stable $(\partial^2 F(h, u)[\varphi] > 0$ for every $\varphi \neq 0)$. Then (h, u) is a local minimizer for F.

We say that (h, u) is a local minimizer if there exists $\delta > 0$ such that

$$F(h,u) \le F(g,v)$$

for every $(g, v) \in \mathcal{X}$ with

•
$$||g-h||_{\infty} < \delta, |\Omega_g| = |\Omega_h|,$$

• $\|\nabla v - \nabla u\|_{L^{\infty}(\Omega';\mathbb{M}^n)} < \delta.$

Theorem (Bonacini, Adv. Calc. Var. 2014)

Let n = 2, 3, and assume that the elastic energy density has the form

$$W(\xi) := \frac{1}{2} \mathbb{C}\left(\frac{\xi + \xi^T}{2}\right) : \left(\frac{\xi + \xi^T}{2}\right), \qquad \xi \in \mathbb{M}^n,$$

for some constant fourth-order tensor $\mathbb C$ such that

$$\mathbb{C}\xi: \xi \ge c_0 |\xi|^2 \quad for \ every \ \xi \in \mathbb{M}^n_{sym}, \quad c_0 > 0.$$

If (h, u) is a strictly stable critical pair, then (h, u) is an isolated local minimizer for F in the following sense: for every $M > \|\nabla u\|_{\infty}$ there exists $\delta = \delta(M) > 0$ such that

$$F(h, u) < F(g, v)$$

for every $(g, v) \in \mathcal{X}$ with $0 < ||g - h||_{\infty} < \delta$, $|\Omega_g| = |\Omega_h|$, and $v \in \operatorname{Lip}_M(\Omega_g; \mathbb{R}^n)$.

Two steps strategy

(Fusco & Morini 2012. Acerbi, Fusco & Morini 2013)

うして ふゆう ふほう ふほう ふしつ

- Local $W^{2,p}$ -minimality
 - minimality with respect to competitors (g, v) with $||g h||_{W^{2,p}}$ sufficiently small
 - holds in dimensions n = 2, 3
 - requires to control the trace of the gradient of $W(\nabla u)$ on Γ_h in a proper Sobolev space of negative fractional order
 - careful new estimates for the elliptic system associated with the first variation of the elastic energy

Two steps strategy

(Fusco & Morini 2012. Acerbi, Fusco & Morini 2013)

- Local $W^{2,p}$ -minimality
 - minimality with respect to competitors (g,v) with $\|g-h\|_{W^{2,p}}$ sufficiently small
 - holds in dimensions n = 2, 3
 - requires to control the trace of the gradient of $W(\nabla u)$ on Γ_h in a proper Sobolev space of negative fractional order
 - careful new estimates for the elliptic system associated with the first variation of the elastic energy
- Local $W^{2,p}$ -minimality implies local minimality (as before)
 - contradiction argument
 - the L^{∞} -bound on the deformation gradient allows to regard the elastic energy as a volume perturbation of the surface energy
 - appeal to the regularity theory for *quasi-minimizers of the area* functional

Application: stability of the flat configuration

Asaro-Grinfeld-Tiller instability: instability of the flat layer above a critical value of the thickness of the film

Flat configuration with volume d > 0:

- Reference configuration: $\Omega_d = Q \times (0, d)$ (profile $h(x) \equiv d$)
- Affine critical point for the elastic energy: $v_0(z) = M[z], M \in \mathbb{M}^n_+$

Theorem

There exists $d_0 > 0$ such that for every $d < d_0$

 $\partial^2 F(d, v_0)[\varphi] > 0$ for every $\varphi \neq 0$.

• The result is proved by Fusco & Morini (2012) in two dimension and linearized elasticity (here the local minimality threshold of the flat configuration is determined analytically)

• For crystalline anisotropies, the AGT instability is suppressed

Assume that $\psi_c : \mathbb{R}^n \to [0, +\infty)$ satisfies:

- ψ_c is convex and positively 1-homogeneous,
- the associated Wulff shape W_{ψ_c} contains a neighbourhood of the origin,
- ∂W_{ψ_c} contains a horizontal facet:

$$\left\{ (x,y) \in \mathbb{R}^{n-1} \times \mathbb{R} : |x| < a, \ y = b \right\} \subset \partial W_{\psi_c}.$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

• For crystalline anisotropies, the AGT instability is suppressed

Assume that $\psi_c : \mathbb{R}^n \to [0, +\infty)$ satisfies:

- ψ_c is convex and positively 1-homogeneous,
- the associated Wulff shape W_{ψ_c} contains a neighbourhood of the origin,
- ∂W_{ψ_c} contains a horizontal facet:

$$\left\{ (x,y) \in \mathbb{R}^{n-1} \times \mathbb{R} : |x| < a, \ y = b \right\} \subset \partial W_{\psi_c} \,.$$

うして ふゆう ふほう ふほう ふしつ

Theorem

For every d > 0 the flat configuration (d, v_0) is a local minimizer for the functional corresponding to the surface energy density ψ_c .

The crystalline case: sketch of the proof

• Let $\psi_C(x, y) := a|x| + b|y|$ the anisotropy whose Wullf shape is the cylinder $C := \{(x, y) : |x| < a, |y| < b\}$, and let F_C be the associated functional.

• We have
$$\psi_C \le \psi_c, \ \psi_C(0,1) = \psi_c(0,1) = b.$$

- For $\varepsilon > 0$, let F_{ε} be the functional associated with the "regular" anisotropy $\psi_{\varepsilon}(x, y) := a\sqrt{\varepsilon^2 y^2 + |x|^2} + (b a\varepsilon)|y|$. Notice that $\psi_{\varepsilon} \nearrow \psi_C$ as $\varepsilon \to 0^+$.
- We have, for $\varepsilon < \varepsilon_0$,

$$\partial^2 F_{\varepsilon}(d, v_0)[\varphi] = -\int_{Q \times (0, d)} W_{\xi\xi}(\nabla v_0) \nabla v_{\varphi} : \nabla v_{\varphi} \, \mathrm{d}z + \frac{a}{\varepsilon} \int_Q |\nabla \varphi|^2 \, \mathrm{d}\mathcal{H}^{N-1}$$
$$\geq C \|\varphi\|_{H^1(Q)}^2.$$

Then for every competitor (g, v) sufficiently close to (d, v_0)

$$F_{c}(d, v_{0}) = \int_{Q \times (0, d)} W(\nabla v_{0}) \, \mathrm{d}z + \psi_{c}(0, 1) = F_{C}(d, v_{0})$$
$$= F_{\varepsilon_{0}}(d, v_{0}) \leq F_{\varepsilon_{0}}(g, v) \leq F_{C}(g, v) \leq F_{c}(g, v) \, .$$

(Fonseca, Fusco, Leoni & Morini 2014)

- Evolution of anisotropic epitaxially strained films via surface diffusion with curvature regularization, in three dimension
- Linear elastic energy density $W : \mathbb{M}^{3 \times 3}_{\text{sym}} \to [0, +\infty),$ $W(A) := \frac{1}{2}\mathbb{C}A : A$, with \mathbb{C} positive definite fourth order tensor.

Evolution equation: find $h(\cdot, t)$ solution to

$$\frac{1}{J}\frac{\partial h}{\partial t} = \Delta_{\Gamma_{h(\cdot,t)}} \left[H^{\psi} + W(E(u)) - \varepsilon \left(\Delta_{\Gamma_{h(\cdot,t)}} (|H|^{p-2}H) - \frac{1}{p}|H|^{p}H + |H|^{p-2}H|B|^{2} \right) \right]$$

with $J = \sqrt{1 + |\nabla h|^2}$, $u(\cdot, t)$ elastic equilibrium in $\Omega_{h(\cdot, t)}$.

• Short time existence of a variational solution of the geometric evolution equation starting from an initial datum $h_0 \in W^{2,p}_{\#}(Q)$

Theorem (Liapunov stability)

Assume that

- the flat configuration satisfies $\partial^2 F(d, v_0)[\varphi] > 0$ for every φ , or
- ψ_c is a crystalline anisotropy.

Then the flat configuration (d, v_0) is Liapunov stable: for every $\sigma > 0$ there exists $\delta(\sigma) > 0$ such that if $||h_0 - d||_{W^{2,p}} < \delta(\sigma)$ then every variational solution with initial datum h_0 exists for all times and $||h(\cdot, t) - d||_{W^{2,p}} < \sigma$ for every t > 0.

うつう 山田 エル・エー・ 山田 うらう

Theorem (Liapunov stability)

Assume that

- the flat configuration satisfies $\partial^2 F(d, v_0)[\varphi] > 0$ for every φ , or
- ψ_c is a crystalline anisotropy.

Then the flat configuration (d, v_0) is Liapunov stable: for every $\sigma > 0$ there exists $\delta(\sigma) > 0$ such that if $\|h_0 - d\|_{W^{2,p}} < \delta(\sigma)$ then every variational solution with initial datum h_0 exists for all times and $\|h(\cdot, t) - d\|_{W^{2,p}} < \sigma$ for every t > 0.

Theorem (Asymptotic stability)

Assume that $\partial^2 F(d, v_0)[\varphi] > 0$ for every $\varphi \neq 0$.

Then the flat configuration (d, v_0) is asymptotically stable: there exists $\delta > 0$ such that if $\|h_0 - d\|_{W^{2,p}} < \delta(\sigma)$, then every variational solution with initial datum h_0 exists for all times and $\|h(\cdot, t) - d\|_{W^{2,p}} \to 0$.

Thank you for your attention!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・